期刊文献+

基于SVR的石油期货价格短期预测 被引量:3

Petroleum Futures Prices’ Short-term Forecasting Based on SVR
下载PDF
导出
摘要 将SVR原理引入到石油期货价格的时间序列中,并以美原油价格进行了实证分析。结果表明:该方法能充分反映石油期货价格序列走势,对短期价格的预测具有较高的精度;并且还发现,超级参数的选择服从一定规律,即其乘积在一定范围内效果较佳。之后,还将此理论推广到多维影响因素和其他金融时间序列的预测中。 The support vector regression (SVR) principle is introduced into the petroleum futures forward price and has carried on the empirical analysis by the US crude price. The results indicate that this method can fully reflect the petroleum forward price sequence trend and has the high precision to short term price′s forecast. Moreover,super parameter′s choice obedience certain rule,namely the majority of its product falls within a certain range. This theory is extended to the multidimensional impact of this factor and other financial time series also.
出处 《科学技术与工程》 2010年第18期4585-4589,共5页 Science Technology and Engineering
基金 大学生创新性实验计划项目资助
关键词 支持向量机回归 石油期货价格 时间序列预测 拐点预测 support vector regression petroleum futures prices time series prediction turning point prediction
  • 相关文献

参考文献7

  • 1Farooq M,Mahdi N.Forecasting output using oil prices:a cascaded artificial neural network approach.Journal of Economics and Business,2006;58(2):168-180.
  • 2Gori F,Ludovisi D,Cerritelli P F.Forecast of oil price and consumption in the short term under three scenarios:parabolic,linear and chaotic behaviour.Energy,2007;32(7):1291-1296.
  • 3Mirmirani S,Li H C.A comparison of VAR and neural networks with genetic algorithm in forecasting price of oil.Advances in Econometrics,2004;19:203-223.
  • 4邓乃扬,田英杰.数据挖掘中的新方法-支持向量机.北京:科学出版社,2005.
  • 5Vapnik V N.Statistical Learning Theory.New York:Wiley,1998.
  • 6李新战,赵震宇.支持向量机基础及其应用前景[J].科技信息,2009(17):39-39. 被引量:5
  • 7林升梁,刘志.基于RBF核函数的支持向量机参数选择[J].浙江工业大学学报,2007,35(2):163-167. 被引量:143

二级参考文献8

  • 1李盼池,许少华.支持向量机在模式识别中的核函数特性分析[J].计算机工程与设计,2005,26(2):302-304. 被引量:98
  • 2LUNTS A,BRAILOVSKIY V.Evaluation of attributes obtained in Statistical Decision Rules[J].Engineering Cybemetics,1967(3):98-109.
  • 3CHAPELLE O,VAPINK V N.Choosing multiple parameters for support vector machines[J].Machine Learning,2002,46:131-159.
  • 4LUNTS A,BRAILOVSKIY V.Evaluation of attribtes obtained in statistical decision rules[J].Engineering Cybernetics,1967,3(1):982-1009.
  • 5MURPHY P M,AHA IRVINE D W.CA:University of california,department of information and computer science[EB/OL].http://www.ics.uci.edu/~mlearn/ MLRepository.html,1994.
  • 6KEERTHI S,CHIH J.Asymptotic behavior of support vector machines with gaussian kernel[J].Neural Computation,2003,15:1667-1689.
  • 7VAPINK V N.The nature of statistical learning theory[M].New York:Springer Verlag,2000.
  • 8刘江华,程君实,陈佳品.支持向量机训练算法综述[J].信息与控制,2002,31(1):45-50. 被引量:97

共引文献147

同被引文献24

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部