期刊文献+

Cellular automaton modeling of semisolid microstructure formation 被引量:1

Cellular automaton modeling of semisolid microstructure formation
下载PDF
导出
摘要 Computer modeling of semi-solid structure formation is of significance in both understanding the mechanisms of globular structure formation and determining the effect of solidification conditions on final microstructure.A modified cellular automaton(mCA) model has been developed,which is coupled with macroscopic models for heat transfer calculation and microscopic models for nucleation and grain growth.The mCA model is applied to A356 Al alloy-one of the most widely used semi-solid alloys,to predict grain morphology and grain size during semi-solid solidification,and determines the effects of pouring temperature on the final microstructure.The modeling results show that the lower the initial temperature,the finer grain size will be obtained.In addition,the model can be used to predict the solutal micro-segregation. Computer modeling of semi-solid structure formation is of significance in both understanding the mechanisms of globular structure formation and determining the effect of solidification conditions on final microstructure.A modified cellular automaton(mCA) model has been developed,which is coupled with macroscopic models for heat transfer calculation and microscopic models for nucleation and grain growth.The mCA model is applied to A356 Al alloy-one of the most widely used semi-solid alloys,to predict grain morphology and grain size during semi-solid solidification,and determines the effects of pouring temperature on the final microstructure.The modeling results show that the lower the initial temperature,the finer grain size will be obtained.In addition,the model can be used to predict the solutal micro-segregation.
出处 《China Foundry》 SCIE CAS 2010年第2期143-148,共6页 中国铸造(英文版)
  • 相关文献

参考文献15

  • 1Amar B and Brener E A.Theory of pattern selection in 3-dimension non axisymmetric dendritic growth.Phys.Rev.Lett.,1993,71:589-592.
  • 2Brener E A.Needle-crystal solution in 3-Dimensional dendritic growth.Phys.Rev.Lett.,1993,71:3653-3656.
  • 3Brener E A.Three dimensional dendritic growth.J.Cryst.Growth,1996,166:339-346.
  • 4McFadden G B,Coriell S R and Sekerka R F.Analytic solution for a non-equilibrium segregation.J.Cryst.Growth,2000,208:726-745.
  • 5Spittle J A and Brown S G R.Computer simulation of the effects of alloy variables on the grain structure of casting.Acta Metal.,1989,37:1803-1810.
  • 6Gandin C A and Rappaz M.Probabilities modeling of microstructure formation in solidification processes.Acta Metal Mater.,1993,41:345-360.
  • 7Karma A and Rappel W J.Phase field of dendritic side-branching with thermal noise.Phys.Rev.E.,1999,60:3614-3625.
  • 8Juric D and Tryggvason G.A front tracking method for dendritic solidification.J.Comput.Phys.,1996,123:127-148.
  • 9Kim Y T,Goldenfeld N,and Dantzig J.Computation of dendritic microstructures using a level set method.Phys.Rev.E.,2000,62:2471-2474.
  • 10Sasikumar R and Sreenivisan R.Two dimensional simulation for dendritic morphology.Acta Mater.,1994,42:2381-2386.

同被引文献34

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部