期刊文献+

睡眠障碍的手机监测方法研究 被引量:3

Investigation on Method of Using Mobile Phone to Monitor Obstructive Sleep Apnea
下载PDF
导出
摘要 阻塞性呼吸睡眠障碍(OSA)的监护及诊断因过于复杂而主要限于在医院进行,大量就医已造成医疗机构压力增大。为简化操作、实现对OSA患者的日常监护和初步诊断,本文阐述了一种基于手机的睡眠监测和评估方法。通过Visual Studio 2008下的程序开发,实现了手机采集鼾声信号的功能,并在MatLab环境下,对音频信号进行初步处理,定位鼾声信号以及分析患者健康状况。通过计算机模拟鼾声信号的实验表明,该方法较好地实现了上述功能,对异常鼾声信号的诊断结果较为准确。本文为家庭化低成本呼吸睡眠障碍监测提供了重要且现实的技术途径。 Currently, monitoring and diagnostics on obstructive sleep apnea (OSA) are usually conducted in a hospital due to their operational complexity. However,with the increasing acquaintances on the disease among patients, the huge number of hospitalization causes an ever heavy burden on medical institutions. To simplify the operation and achieve daily check for OSA patients,here we described a sleep monitoring and assessment strategy based on mobile phone. The software thus developed under Visual Studion 2008 environment allows to acquire snoring signal, process the data via computer and thus interpret and diagnose the patient' s health status. Through simulated experiment, it was demonstrated that the mobile phone based sleep monitoring method was a promising way to diagnose accurately on abnormal snoring signal. This study provides a significant and realistic technical approach for family use low cost OSA diagnostics.
作者 王昊 刘静
出处 《北京生物医学工程》 2010年第3期270-277,共8页 Beijing Biomedical Engineering
基金 清华-裕元医学科学研究基金 中国科学院科技助残基金资助
关键词 阻塞性呼吸睡眠障碍(OSA) 手机 Windows MOBILE WAVEFORM AUDIO API obstructive sleep apnea(OSA) mobile phone Windows Mobile Waveform Audio API
  • 相关文献

参考文献7

  • 1刘欣,赵富强.呼吸暂停睡眠分析仪的研制[J].医疗设备信息,1999,14(6):11-12. 被引量:2
  • 2Collop NA,Shepard JW,Strollo PJ.Executive summary on the systematic review and practice parameters for portable monitoring in the investigation of suspected sleep apnea in adults.American Journal of Respiratory and Critical Care Medicine,2004,169:1160-1163.
  • 3Fiz JA,Abad J,Jane R,et al.Acoustic analysis of snoring sound in patients with simple snoring and obstructive sleep apnoea.European Respiratory Journal,1996,9:2365-2370.
  • 4Esnaola S,Duran J,Infante-Rivard C,et al.Diagnostic accuracy of portable recording device (MESAM Ⅳ) in suspected obstructive sleep apnoea.European Respiratory Journal,1996,9:2597-2605.
  • 5俞梦孙,张宏金.睡眠医学监测的新模式[J].中国医疗器械信息,2003,9(3):4-6. 被引量:11
  • 6http://yxj.miit.gov.cn/n11293472/n11295057/n11298508/12726565.html.
  • 7https://ccrma.stanford.edu/courses/422/projects/WaveFormat/.

二级参考文献9

共引文献11

同被引文献42

  • 1余华,杨露菁,李启元.基于径向基神经网络的语音识别技术[J].控制工程,2009,16(S2):90-93. 被引量:7
  • 2林规茂,张航,杨仲乐.睡眠的探测[J].医疗设备信息,2005,20(4):32-34. 被引量:1
  • 3刘靖明,韩丽川,侯立文.基于粒子群的K均值聚类算法[J].系统工程理论与实践,2005,25(6):54-58. 被引量:122
  • 4林规茂.睡眠过渡过程监测的新方法[J].中国医疗器械信息,2005,11(6):29-32. 被引量:1
  • 5唐艳,汤井田.应用移动通讯技术设计心电监护系统[J].生物医学工程学杂志,2006,23(5):1130-1133. 被引量:4
  • 6俞梦孙 杨军 等.用微动敏感床垫监测睡眠的研究[J].中华航空航天医学杂志,1999,10(1):40-45.
  • 7Chen S, Cowan CFN, Grant PM. Orthogonal least squares learning algorithm for radial basis function networks. Neural Networks, IEEE Trans. on, 1991, 2(2): 302-309.
  • 8Krishna K, Narasimha Murty M. Genetic k-means algorithm. IEEE Trans. on Systems, Man, and Cybernetics Part B: Cyber-netics, 1999, 29(3): 433-439.
  • 9Bilmes JA, Bartels C. Graphical model architectures for speech recognition. Signal Processing Magazine, IEEE, 2005, 22(5): 89-100.
  • 10International Telecommunication Union. Key statistical high?lights: ITU data releaseJune 2012[EB/OL]. (2012-06)[2012-] 0-04]. http://www. it u. int/ITUD/ict/statistics/ma?terial/pdf/2011 % 20Statistical % 20highlights_J une_20 12. pdf.

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部