期刊文献+

一类潜伏期与传染期均传染的SEIQR传染病模型 被引量:10

A Kind of SEIQR Epidemical Model with Infectious Force in the Latent Period and Infected Period
下载PDF
导出
摘要 研究了一类潜伏期和感染期均传染的SEIQR模型的全局稳定性,找到疾病绝灭和持续生存的阈值——基本再生数R0,证明了无病平衡点和地方病平衡点的存在性和全局渐近稳定性,揭示了隔离对疾病控制的积极作用。 The global stability of SEIQR epidemical model with infectious force in the latent period and infected period is discussed. The threshold, basic reproductive number which determines whether a disease is extinct or not, is obtained. The existences and global stabilities of the disease - free equilibrium and the endemic equilibrium are solved and active effects of quarantine.
作者 陈中祥
出处 《数学理论与应用》 2010年第2期23-29,共7页 Mathematical Theory and Applications
关键词 波动引理 流行病模型 全局稳定性 基本再生数 Fluctuation lemma Epidemical model Global asymptotical stable Basic reproductive number
  • 相关文献

参考文献12

  • 1W O Kermack, A. G. M. , Contributions to the mathematical theory fepidemics [ J ]. Proc. Roy. Soc, 1927 (A115). 700-721.
  • 2原三领,韩丽涛,马知恩.一类潜伏期和染病期均传染的流行病模型[J].生物数学学报,2001,16(4):392-398. 被引量:54
  • 3Li, G. and Zhen, J. Global stability of an sei epidemic model withgeneral contact rate[J]. Chaos Solitons and Fractals, 2005,23 (3) ,997 - 1004.
  • 4Li, G. and Jin,Z. Global stability ofa SEIR epidemic model with infectious force in latent,infected and immune period[J]. Chaos, Solitons and Fractals, 2005,25(5) ,1177 -1184.
  • 5van den Driessche, P. and Watmough, J. Reproduction numbers and sub - threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences,2002, (180) ,29-48.
  • 6Hirsch, Hanisch W. M. H. and Gabriel,J. Differential equation models of some parasitic infections:Methods for the study of asymptotic behavior[ J ]. Communications on Pure and Applied Mathematics, 1985,38 (6) ,733 - 753.
  • 7Li, M.Y. and Muldowney, J.S. A geometric approach to the global - stability problems [ J ]. SIAM J. Math. Anal, 1996,27(4) ,1070 - 1083.
  • 8Li, M.Y. , Dulac criteria for autonomous systems having an invariant affine manifold[J]. J. Math. Anal. Appl. , 1996, (199) ,374-390.
  • 9Li, M.Y. and Muldowney,J. S. On R.A. Smith's Autonomous Convergence Theorem[J]. Rocky Mountain J. Math., 1995,25 ( 1 ) ,365 -378.
  • 10Muldowney, J. S., Compound matrices and ordinary differential equations [J]. Rocky Mountain J. Math, 1990,20(4) ,857 -872.

二级参考文献7

  • 1[1]Kermark M D. Mokendrick A G. Contributions to the mathematical theory of epidemics[J]. Part I, Proc Roy Soc, A, 1927, 115(5):700-721.
  • 2[2]Cooke K L. Stability analysis for a vector disease model[J]. Rocky Mount J Math, 1979, 9(1):31-42.
  • 3[3]Hethcote H W. Qualititative analyses of communicable disease models[J]. Math Biosci, 1976, 28(3):335-356.
  • 4[4]Capasso V. Mathematical structures of epidemic systems[J]. Lecture notes in biomath[M]. 97 Springer-verlag,1993.
  • 5[5]Hethcote H W, Liu W M, Leven S A. Dynamical behavior of epidemiological models with nonlinear incidence rates[J]. Math Biosci, 1987, 25(3):359-380.
  • 6[6]Capasso V, Serio G. A generalization of the Kermack-Mckendrick deterministic epidemic model[J]. Math Biosci, 1978, 42(1):41-61.
  • 7[7]Bailey N T J. The Mathematical Theorey of Infectious Diseases.[M]. London: Griffin, 1975.

共引文献53

同被引文献56

引证文献10

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部