期刊文献+

双险种最优再保险策略 被引量:3

The Optimal Reinsurance Policy of Double Insurance Risk Process
下载PDF
导出
摘要 本文对双险种风险模型,在一险种采取比例再保险,另一险种采取超出损失再保险策略下,得到调节系数与再保险自留水平之间的函数关系式,在理赔额为指数分布和Erlang(2)分布的条件下,得到最优比例再保险和超出损失再保险的自留水平,以及调节系数最大值。 In this paper, we study the double - insurance risk mode under one claim with proportional reinsurance and the other with excess of loss reinsurance. The function relationship between the adjustment coefficient and the reinsurance retention level is given. We also obtain the optimal proportional reinsurance and excess of loss reinsurance retention levels, as well as the maximal adjustment coefficient as the claims amount distribution are exponential distribution and Erlang(2) distribution. Keywords Ruin probability Lundberg' s inequality Adjustment coefficient Proportional reinsurance Excess - loss reinsurance
作者 蔡平霞
出处 《数学理论与应用》 2010年第2期101-104,共4页 Mathematical Theory and Applications
关键词 破产概率 LUNDBERG不等式 调节系数 比例再保险 超出损失再保险 Ruin probability Lundberg' s inequality Adjustment coefficient Proportional reinsurance Excessloss reinsurance
  • 相关文献

参考文献5

  • 1Liang Z B, Guo J Y. Upper bound for ruin probabilities under optimal investment and proportional reinsurance [J]. Appl. Stochastic Models Bus. Ind,2008(24) ,109 - 128.
  • 2Taksar M I, Markussen C. Optimal dynamic reinsurance policies for large insurance portfolios [ J ]. Finance and Schochastic,2003 (7) ,97 - 121.
  • 3Schmidli H. Stochastic Control in Insurance[ M ]. Springer- Verlag London Limited,2008.
  • 4Luo S Z, Taksar M, Tsoi A. On reinsurance and investment for large insurance portfolios [ J ]. Insurance: Mathematics and Economics 2008(42) ,434 -44.
  • 5Bai L H, Guo J Y. Optimal proportional reinsurance and investment with multiple risky assets and no - shorting constraint [ J ]. Insurance : Mathematics and Economics,2008 (42) ,968 - 975.

同被引文献16

  • 1D C M DICKSON, H R WATERS. Reinsurance and ruin[J]. Insurance :Mathematics and Economics, 1996,19 (1) : 61 -- 80.
  • 2H SEHMIDLI. On minimizing the ruin probability by investment and reinsuranee[J]. Ann Appl Probab, 2002, 12(3) : 890 --907.
  • 3C S LIU, H L YANG. Optimal investment for a insurer to minimize its probability of ruin[J]. North American Actuarial Journal,2004,8(2) :11--31.
  • 4M L CENTENO. Measuring the effects of reinsurance by the adjustment coefficient in the sparre anderson model[J]. Insurance: Mathematics and Economics,2002,30(1) :37--49.
  • 5M L CENTENO. Dependent risks and excess of loss reinsurance[J]. Insurance: Mathematics and Economics, 2005, 37 (2): 229--238.
  • 6B OKSENDAL. toehastie differential equations[M]. New York: Springer-Verlag, 2000.
  • 7Diasparra M A, Romera R. Bounds for the ruin probability of a discrete time risk process[ J ]. J Appl probab ,2009,46:99 - 112.
  • 8CentenoM L.Dependent risks and excess of loss reinsurance[J].Insurance:Mathematics and Economics,2005,37:229-238.
  • 9Grandell J.Aspects of Risk Theory[M].New York:Springer-Verlag,1991.
  • 10Gerber H U,Shiu E.On the time value of ruin[J].North Amer Actuar J,1998,2:48-78.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部