摘要
多重共线性简称共线性是多元线性回归分析中一个重要问题。消除共线性的危害一直是回归分析的一个重点。目前处理严重共线性的常用方法有以下几种:岭回归、主成分回归、逐步回归、偏最小二乘法、Lasso回归等。本文就这几种方法进行比较分析,介绍它们的优缺点,通过实例分析以便于选择合适的方法处理共线性。
Multicollinearity referred to as collinearity is a multi - linear regression analysis in a very difficult issue. How to eliminate the collinearity hazards regression analysis has been a priority. The literature at home and abroad to deal with serious collinearity methods commonly used are the following: Ridge regression, principal component regression, stepwise regression, partial least squares method, Lasso regression. In this paper, a comparative analysis of these methods and describe their advantages and disadvantages, easy to select the appropriate ways to deal with collinearity through the example analysis.
出处
《数学理论与应用》
2010年第2期105-109,共5页
Mathematical Theory and Applications
关键词
岭回归
主成分回归
逐步回归
偏最小二乘法
Lasso回归
Ridge regression Principal component regression method Partial least squares regression Lasso regression