期刊文献+

交错Mordell-Tornheim和Witten多重级数

Alternating Mordell-Tornheim and Witten multiple series
原文传递
导出
摘要 本文通过对几个交错多重调和级数的讨论,统一地得到了交错Mordell-Tornheim和Witten多重级数的一些已有的和新的表达式. In this note, we obtain some known and new evaluation formulae on alternating Mordell-Tornheim and Witten multiple series via several alternating multiple harmonic series.
出处 《中国科学:数学》 CSCD 北大核心 2010年第6期517-532,共16页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:10871169)资助项目
关键词 交错多重调和级数 Mordell—Tornheim多重级数 RIEMANN zeta值 Witten多重级数 alternating multiple harmonic series, Mordell-Tornheim multiple series, Riemann zeta values, Witten multiple series
  • 相关文献

参考文献14

  • 1Tornheim L. Harmonic double series. Amer J Math, 1950, 72:303-314.
  • 2Subbarao M V, Sitaramachandrarao R. On some infinite series of L. J. Modell and their analogues. Pacific J Math, 1985, 119:245 255.
  • 3Matsumoto K. On the analytic contiuation of various multiple zeta-function. In: Bennett M A, et al. eds. Number Theory for the Millennium, vol. II. Proceedings of Millennial Conference on Number Theory. Wellesley: A K Peters, 2002, 417-440.
  • 4Matsumoto K. On Mordell-Tornheim and other multiple zeta-function. In: Heath-Brown D R, Moroz B Z, eds. Proceedings of the Session in Analytic Number Theory and Diophantine Equations. Bonner Math Schriften, vol. 360. Bonn: Univ Bonn, 2003.
  • 5Huard J G, Williams K S, Zhang N Y. On Tornheim's double series. Acta Arith, 1996, 75:105- 117.
  • 6Matsumoto K, Nakamura T, Oehiai H, et al. On value-relations, functional relations and singularities of Mordell. Tornheim and related triple zeta~functions. Acta Arith, 2008, 132:99-125.
  • 7Tsumura H. On Mordell-Tornheim zeta-values. Proc Amer Math Soc, 2005, 133:2387-2393.
  • 8Zagier D. Values of zeta functions and their applications. In: Proc First Congress of Math, vol. II. Progress in Math, vol. 120. Boston: Birkhauser, 1994, 497- 512.
  • 9Matsumoto K, Tsumura H. On Witten multiple zeta-functions associated with semisimple Lie Algebras I. Ann Inst Fourier (Grenoble), 2006, 56:1457-1504.
  • 10Nakamura T. Double Lerch value relations and functional relations for Witten zeta functions. Tokyo J Math, 2008, 31:551-574.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部