摘要
研究了一类高阶非线性中立型泛函微分方程x^((2n))(t)+cx^((2n))(t-τ)+f(x)x′+bx(t)+g(x(t-σ))=p(t)周期解的存在性,利用分析技巧结合重合度理论给出了该方程存在周期解的充分性定理.
In this paper, we discuss the existence of periodic solution of the following high order nonlinear neutral functional differential equation: x^(2n)(t)+cx^(2n)(t-τ)+f(x)x'+bx(t)+g(x(t-σ))=p(t). A sufficient condition for the existence of periodic solution of the equation is given by using the coindence degree theory and analytical skills.
出处
《数学的实践与认识》
CSCD
北大核心
2010年第12期169-175,共7页
Mathematics in Practice and Theory
基金
湖南科技学院项目(09XKYTC035)
湖南省教育厅课题(09C443)
关键词
泛函微分方程
中立型方程
周期解
重合度
functional differential equation
neutral delay equation
periodic solution
coincidence degree