期刊文献+

一个新的Hilbert型不等式及其等价形式 被引量:4

A New Hilbert-Type Inequality and Its Equivalalent Form
原文传递
导出
摘要 引入参数和权系数,通过对权系数估算,给出一个新的核为-2齐次的Hilbert型不等式及其等价形式,并应用复分析方法,求出其最佳的常数因子,同时给出了其逆向不等式. By introducing some parameters and estimating the weight coefficient, a new Hilbert's inequality with the homogeneous kernel of-2-order and the equivalent form are given .The best constant factor is calculated by the way of Complex Analysis,and the cases of reverse inequalities are considered.
出处 《数学的实践与认识》 CSCD 北大核心 2010年第12期199-204,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(10871076)
关键词 HILBERT不等式 权系数 HOLDER不等式 hilbert-type inequality weight coefficient hSlder inequality
  • 相关文献

参考文献18

二级参考文献55

共引文献112

同被引文献21

  • 1杨必成.一个新的零齐次核的Hilbert型积分不等式[J].浙江大学学报(理学版),2012,39(4):390-392. 被引量:17
  • 2Hardy G H, Littlewood J E and PoIya G. Inequalities[M]. Cambridge University Press, Cambridge, 1952.
  • 3Hardy G.H., Note on a theorem of Hilbert concerning series of positive terems[J]. Proceedings London Math.Soc., 2005, 23(2): Records of Proc. XIV-XIVI.
  • 4Bicheng Yang and L.Debnath, On the extended Hilbert's inequality[J], J Math Anal Appl, 2002(272): 187-199.
  • 5Zitian Xie, Zheng Zeng, The Hilbert-type integral inequality with the system kernel of -A degree homogeneous form, Kyungpook Mathematical Journal, 2010(50):297-306.
  • 6匡继昌.常用不等式[M].济南:山东科学技术出版社,2003..
  • 7Hardy G H, Littlewood J E, Polya G. Inequalities[M]. London: Cambridge Univ Press, 1952.
  • 8Mintrinovic D S, Pecaric J E, Fink A M. Inequalities involving functions and their integrals and derivatives[M]. Boston: Kluwer Academic Press, 1991.
  • 9Sulaiman W T. On three inequalities similar to Hardy-Hilbert's integral inequality[J]. Acta Math Univ Comenienae, 2007 ( 2 ): 273-278.
  • 10Wang A Z, Yang B C. A New Hilbert-type integral inequality in the whole plane with the non-homogeneous kernel[J]. J of Inequalities and Appl, 2011 : DOIIO1186/1029-242X-2011-123.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部