期刊文献+

Hilbert空间中Lipschitz单调映像变分不等式解的另一个逼近定理

Another Approximation Theorem of Solutions of Variational Inequalities for Lipschitz Monotone Mappings in Hilbert Spaces
原文传递
导出
摘要 首先给出了Hilbert空间中Lipschitz单调映像变分不等式解的迭代格式,并证明了其收敛性.作为应用,证明了Hilbert空间中Lipschitz伪压缩映像的强收敛定理,扩展了已知的相关结果. In the present paper, an iterative sequence of solving varitional inequalities for Lipschitz monotone mappings in Hilbert spaces is proposed firstly, and then its convergence is proved. As its applications, a strong convergence theorem for Lipschitz pseudo-contractions is obtained, which extends the known results.
出处 《数学的实践与认识》 CSCD 北大核心 2010年第12期210-213,共4页 Mathematics in Practice and Theory
基金 国家自然科学基金(10771050)
关键词 强收敛 变分不等式 单调映像 伪压缩映像 strong convergence variational inequality monotone mappings pseudo-contraction
  • 相关文献

参考文献5

二级参考文献11

  • 1谈斌.几类非线性算子零点或不动点迭代算法研究[D].石家庄:军械工程学院,2004.
  • 2Marino G, Xu H K. Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces[J]. Math Anal Appl, 2007,329 : 336-349.
  • 3Zhang S S, Cho Y J, Zhou H Y. Iteration Methods for Nonlinear Operator Equations in Banach Spaces[M]. NewYork Nova Science Publishers, 2002.
  • 4Kamimara S, Takahashi W. Strong convergence of a proximal-type algorithm in Banach spaces[J]. SIAM J Optim, 2002,13:938-945.
  • 5Deimling K. Zeros of a accretive operators[J]. Manuscripta Math, 1974,13:283-288.
  • 6ALBER Y I. Metric and Generalizd Projection Operators in Banach Spaces:Properties and Applications [ A]. KARTSATOS A G. Theory and Applications of Nonlinear Operators of Accretive and Monotone Type [C]. New York: Marcel Dekker, 1996 : 15- 50.
  • 7ALBER Y I ,REICH S. An Iterative Method for Solving a Class of Nonlinear Operator Equations in Banaeh Spaces [J]. Pan Amer Math J ,1994,4(3) :39-54.
  • 8BAUSCHKE H H, COMBETTES P L. A Weak-to-strong Convergence Principle for Fej6r-monotone Methods in Hilbert Spaces [J]. Math Oper Rese,2001,26(3) :248-264.
  • 9CHANG S S, CHO Y J, ZHOU Hai-yun. Iterative Methods for Nonlinear Operator Equations in Banach Spaces [ M], New York: Nova Science Publishers, 2002.
  • 10NAKAJO K, TAKAHASHI W. Strong Convergence Theorems for Nonexpansive Mappings and Nonexpansive Semigroups [ J ]. J Math Anal Appl,2003,279(6) :372-379.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部