期刊文献+

阵列类型对金属/电介质光子晶体强透射影响 被引量:1

Effect of Array Type on Extraordinary Transmission Characteristics for Metal/Dielectric Photonic Crystal
原文传递
导出
摘要 设计了正方形和正六边形圆孔阵列组成的金属/电介质光子晶体(MDPhC)来研究阵列类型对其强透射特性的影响。采用微机电(MEMS)技术制作了两种具有相同结构参数的正方形和正六边形圆孔阵列组成的金/二氧化硅/硅光子晶体,利用傅里叶变换红外光谱仪测量其反射光谱。同时,也对这两种结构进行了时域有限差分法数值模拟。理论模拟和实验测量结果均表明,与正方形圆孔阵列相比,由正六边形圆孔阵列组成的MDPhC能够获得较强的光透射增强效果和较窄的透射峰。 Two kinds of metal/dielectric photonic crystals(MDPhC)combined with round hole arrays(square and hexagonal)are designed to investigate the effect of array type on extraordinary transmission characteristics for MDPhC.Two types of gold/silicon dioxide/silicon photonic crystal with the same structural parameters composed of square and hexagonal hole arrays were fabricated using MEMS technology,and their reflectance spectrums were measured using Fourier transform infrared spectrometer.At the same time,the numerical simulation was used for the two structures by finite difference time domain method.Compared with square round hole array,both the theoretical simulation results and the experimental results prove that MDPhC composed of hexagonal round hole array can obtain better effect of light transmission enhancement and narrower transmission peak.
出处 《激光与光电子学进展》 CSCD 北大核心 2010年第6期113-117,共5页 Laser & Optoelectronics Progress
基金 国家自然科学基金(90607015) 教育部博士研究生基金(20070246099)资助课题
关键词 表面光学 阵列类型 时域有限差分法 金属/电介质光子晶体 强透射特性 optics at surfaces array type finite-diference time-domain method metal/dielectric photonic crystal extraordinary transmission characteristics
  • 相关文献

参考文献20

  • 1T. W. Ebbesen,H. J. Lezec,H. F. Ghaemi et al.. Extraordinary optical transmission through sub-wavelength hole arrays [J]. Nature,1998,391(6668):667-669.
  • 2H. A. Bethe. Theory of diffraction by small holes[J]. Phys. Rev.,1944,66(7):163-182.
  • 3肖功利,姚翔,纪新明,周嘉,包宗明,黄宜平.二维金属亚波长孔阵列的强透射特性研究进展[J].半导体光电,2009,30(2):161-167. 被引量:5
  • 4L. Martín-Moreno,F. J. García-Vidal,J. B. Pendry et al.. Theory of extraordinary optical transmission through subwavelength hole arrays[J]. Phys. Rev. Lett.,2001,86(6):1114-1117.
  • 5A. Krishnan,T. Thio,T. W. Ebbesen et al.. Evanescently coupled resonance in surface plasmon enhanced transmission[J]. Opt. Commun.,2001,200(1):1-7.
  • 6Tineke Thio,H. F. Ghaemi,H. J. Lezec et al.. Surface-plasmon-enhanced transmission through hole arrays in Cr films[J]. J. Opt. Soc. Am. B,1999,16(10):1743-1748.
  • 7Han-Kuei Fu,Yu-Wei Jiang,Ming-Wei Tsai et al.. A thermal emitter with selective wavelength:Based on the coupling between photonic crystals and surface plasmon polaritons[J]. J. Appl. Phys.,2009,105(3):033505.
  • 8Weili Zhang,Abul K. Azad,Jiaguang Han et al.. Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect[J]. Phys. Rev. Lett.,2007,98(18):183901.
  • 9Ming-Wei Tsai,Chia-Yi Chen,Yu-Wei Jiang et al.. Coupling between surface plasmons via thermal emission of a dielectric layer sandwiched between two metal periodic layers[J]. Appl. Phys. Lett.,2007,91(21):213104.
  • 10Irina Puscasu,M. Pralle,M. McNeal et al.. Extraordinary emission from two-dimensional plasmonic-photonic crystals[J]. J. Appl. Phys.,2005,98(1):013531.

二级参考文献64

共引文献22

同被引文献18

  • 1B. D. Gupta, R. K. Verma. Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications [J]. J. Sensors, 2009, 2009:1-12.
  • 2M. Skorobogatiy, A. Kabashin. Plasmon excitation by the Gaussian-like core mode of a photonic crystal waveguide[J]. Opt. Express, 2006, 14(18):8419-8424.
  • 3A. Amezcua-Correa, J. Yang, C. E. Finlayson et al.. Surface enhanced Raman scattering using microstructured optical fiber substrates[J]. Adv. Funct. Mater., 2007, 17(13):2024-2030.
  • 4B. Gauvreau, A. Hassani, M. F. Fehri et al.. Photonic bandgap fiber-based surface plasmon resonance sensors [J]. Opt. Express, 2007, 15(18): 11413-11426.
  • 5X. Zhang, R. Wang, F. M. Coxet al.. Selective coating of holes in microstructured optical fiber and its application to infiber absorptive polarizers[J]. Opt. Express, 2007, 15(24): 16270-16278.
  • 6J. Hou, D. Bird, A. George et al.. Metallic mode confinement in microstruetured fibres-J2. Opt. Express, 2008, 16(9) :5983-5990.
  • 7H. Yan, J. Liu, C. Yang et al.. Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe[J]. Opt. Express, 2008, 16(11): 8300-8305.
  • 8M. Hautakorpi, M. Mattinen, H. Ludvigsen. Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber[J]. Opt. Express, 2008, 16(12):8427-8432.
  • 9A. Hassani, M. Skorobogatiy. Photonic crystal fiber-based plasmonie sensors for the detection of biolayer thickness[J]. J. Opt. Soc. Am. B,2009, 26(8): 1550-1557.
  • 10A. Hassani, M. Skorobogatiy. Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors [J]. J. Opt. Soc. Am. B,2007, 24(6):1423--1429.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部