期刊文献+

n维复Swift-Hohenberg方程的动态分叉 被引量:1

Dynamic Bifurcation of the n-Dimensional Complex Swift-Hohenberg Equation
下载PDF
导出
摘要 考虑复Swift-Hohenberg方程的分叉问题.首先对复Swift-Hohenberg方程在一维区域(0,L)上的吸引子分叉进行了考虑.而后给出了n维复Swift-Hohenberg方程,在一般区域上Dirichlet边界条件下和周期边界条件下,当参数λ穿过某些分叉点时从平凡解处分叉出吸引子,并对吸引子分叉的稳定性进行了分析. The bifurcation of the complex Swift-Hohenberg equation was considered. Attractor bifurcation of the complex Swift-Hohenberg equation on a one-dimensional domain (0, L) was investigated. It' s also shown that the n-dimensionalcomplex Swift-Hohenberg equation bifur- cates from the trivial solution to an attractor under the Dirichlet boundary condition on a general domain and under the periodic boundary condition when the bifurcation parameter λ crosses some critical value. The stability property of the bifurcation attractor is also analyzed.
出处 《应用数学和力学》 CSCD 北大核心 2010年第6期710-721,共12页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10871097) 江苏省研究生培养创新工程2009年度资助项目(CX09B-296Z)
关键词 Swift—Hohenberg方程 分叉 稳定性 中心流形 Swift-Hohenberg equation bifurcation stability center manifold
  • 相关文献

参考文献2

二级参考文献26

  • 1Chow, S. N. & Hale, J. K., Methods of Bifurcation Theory, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Science), Vol. 251, Springer-Verlag, New York,1982.
  • 2Constantin, P. & Foias, C., The Navier-Stokes Equations, University of Chicago Press, Chicago, 1988.
  • 3Henry, D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol.840, Springer-Verlag, Berlin, 1981.
  • 4Hirsch, M. W., Pugh, C. C. & Shub, M., Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583,Springer-Verlag, Berlin, 1977.
  • 5Hurewicz, W. & Wallman, H., Dimension Theory, Princeton Mathematical Series, Vol. 4, Princeton University Press, Princeton, N. J., 1941.
  • 6Ma, T. & Wang, S. H., Structural classification and stability of incompressible vector fields, Physica D, 171(2002), 107-126.
  • 7Ma, T. & Wang, S. H., Attractor bifurcation theory and its applications to Rayleigh-Benard convection,Communications on Pure and Applied Analysis, 2:3(2003), 591-599.
  • 8Ma, T. & Wang, S. H., Dynamic bifurcation and stability in the Rayleigh-Benard convection, Communication of Mathematical Sciences, 2:2(2004), 159-183.
  • 9Nirenberg, L., Topics in Nonlinear Functional Analysis, with a chapter by E. Zehnder, Notes by R. A.Artino, Lecture Notes, 1973-1974, Courant Institute of Mathematical Sciences, New York University,New York, 1974.
  • 10Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York, 1983.

共引文献17

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部