期刊文献+

粗糙核超奇异积分算子的加权有界性

Weighted Estimates for Strongly Singular Integral Operators With Rough Kernels
下载PDF
导出
摘要 利用Fourier变换和Littlewood-Paley理论,讨论了带粗糙核的超奇异积分算子的加权有界性.证明了带粗糙核的超奇异积分算子从Sobolev空间到Lebesgue空间的有界性. The Fourier transform and Littlewood-Paley theory were used to give the weighted boundedness of the strongly singular integral operator. It is shown that the strongly singular integral operator is bounded from the Sobolev space to the Lebesgue space.
出处 《应用数学和力学》 CSCD 北大核心 2010年第6期731-738,共8页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10771110) 教育部重大项目基金资助项目(309018)
关键词 超奇异积分算子 粗糙核 AP权 strongly singular intergral operators rough kernels Ap weights
  • 相关文献

参考文献1

二级参考文献6

  • 1Shanzhen Lu,Qiang Wu,Dachun Yang.Boundedness of commutators on Hardy type spaces[J].Science in China Series A: Mathematics.2002(8)
  • 2Javier Duoandikoetxea,José L. Rubio de Francia.Maximal and singular integral operators via Fourier transform estimates[J].Inventiones Mathematicae.1986(3)
  • 3Fefferman,R.A note on singular integrals, Proc[].Journal of the American Mathematical Society.1979
  • 4Duoandikoetxea,J.Weighted norm inequalities for homogeneous singular integrals, Trans[].Journal of the American Mathematical Society.1993
  • 5Hofmann,S.An off-diagonal T1 theorem and applications, J[].Journal of Functional Analysis.1998
  • 6Duoandikoetxea,J.Rubio de Francia, L.J. Maximal and singular integral operators via Fourier transform estimates, Invent[].Mathematica Journal.1986

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部