期刊文献+

适用于微流控芯片颗粒分选的阵列光镊系统 被引量:4

Optical Tweezers Array Based on Double-Plate Shearing Interference for Microfluidic Particle Sorter
原文传递
导出
摘要 介绍了基于双平板剪切干涉的阵列光镊系统的基本原理以及采用微流控芯片制备技术制作阵列光镊样品池的方法,并通过实验验证了阵列光镊系统可以有效实现颗粒捕获和移动的功能。双平板剪切干涉法利用多光束干涉原理,可实现高亮度、边缘清晰的明暗条纹,确保捕获颗粒所需的光学梯度力;条纹的周期易于调节,具有较大的灵活性。采用基于化学刻蚀法的玻璃微流控芯片制作方法具有较好的光学性能、力学性能和电绝缘性,且玻璃芯片对蛋白的吸附较小,适合细胞以及蛋白质等生物大分子的实验。阵列光镊与微流控芯片分析技术结合,可发挥样品用量少、效率高等优点,有望成为微纳尺度分析技术中的重要手段。 The principle of optical tweezers array based on double-plate shearing interference and the particle separation chip by mircofluidic fabrication method is introduced.The function of particle trapping and separation of the optical tweezers array is verified by the experiments.According to the principle of multi-beam light interference,double-plate shearing interference can produce stripes with high brightness and sharp edge to insure the gradient force applied to the trapped particles.The high flexibility of the system is benefited from the easy adjustment of stripe period.The microfluidic chip made by glass is fabricated by chemical etching,with good optical property,mechanical strength and electricity insulation.And the glass microfluidic chip is suitable for the samples of cell and macromolecules,such as protein,because of weak adsorption of protein.Taking advantage of fewer sample consumption and higher efficiency,the combination of optical tweezers array with microfluidic chip could be one of important tools for micro-nano scale analytical technology in the near future.
出处 《中国激光》 EI CAS CSCD 北大核心 2010年第6期1659-1664,共6页 Chinese Journal of Lasers
基金 国家自然科学基金(20505002) 北京市优秀人才培养资助计划(20071D1600300394) 教育部新世纪优秀人才支持计划(NCET-08-0048)资助课题
关键词 生物光学 阵列光镊 微流控芯片 颗粒捕获 颗粒分选 biological optics optical tweezers array microfluidic chip particle trapping particle separation
  • 相关文献

参考文献4

二级参考文献47

共引文献22

同被引文献86

  • 1鲍建华,龚錾,陈洪涛,王忠,李银妹,楼立人.粒子的轴向位移对光阱力学参数标定的影响[J].中国激光,2005,32(10):1421-1424. 被引量:5
  • 2魏熙胤,牛瑞芳.流式细胞仪的发展历史及其原理和应用进展[J].现代仪器,2006,12(4):8-11. 被引量:40
  • 3姚保利,雷铭.多功能光学微操纵平台及应用[J].激光与光电子学进展,2007,44(6):15-26. 被引量:4
  • 4J Knight, A Vishwanath, J Brody, et al.. Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds [J]. Phys Rev Lett, 1998, 80(17): 3863--3866.
  • 5G Lee, C Hung, B Ke, et al.. Hydrodynamic focusing for a micromachined flow cytometer [J]. J Fluids Engineering, 2001, 123(3): 672--679.
  • 6M Rosenauer, W Buchegger, I Finoulst, et al.. Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes [J]~. Microfluidics and Nanofluidies, 2011, 10(4): 761--771.
  • 7S Hong, P Tsou, C Chou, et al.. Microfluidic three-dimensional hydrodynamic flow focusing for the rapid protein concentration analysis [J]. Biomicrofluidics, 2012, 6(2): 024132.
  • 8G Testa, R Bernini. Micro flow cytometer with 3D hydrodynamic focusing [C]. SPIE, 2012, 8212: 82120H.
  • 9l Godin, C Chen, S Cho, et al.. Microfluidics and photonics for bio-system-on-a-chip: a review of advancements in :echnology towards a microfluidic flow cytometry chip [J]. J Biophotonics, 2008, 1(5)= 355--376.
  • 10T D Chung, H C Kim. Recent advances in miniaturized microfluidic flow cytometry for clinical use [J]. Electrophoresis, 2007, 28(24): 4511--4520.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部