摘要
介绍了基于双平板剪切干涉的阵列光镊系统的基本原理以及采用微流控芯片制备技术制作阵列光镊样品池的方法,并通过实验验证了阵列光镊系统可以有效实现颗粒捕获和移动的功能。双平板剪切干涉法利用多光束干涉原理,可实现高亮度、边缘清晰的明暗条纹,确保捕获颗粒所需的光学梯度力;条纹的周期易于调节,具有较大的灵活性。采用基于化学刻蚀法的玻璃微流控芯片制作方法具有较好的光学性能、力学性能和电绝缘性,且玻璃芯片对蛋白的吸附较小,适合细胞以及蛋白质等生物大分子的实验。阵列光镊与微流控芯片分析技术结合,可发挥样品用量少、效率高等优点,有望成为微纳尺度分析技术中的重要手段。
The principle of optical tweezers array based on double-plate shearing interference and the particle separation chip by mircofluidic fabrication method is introduced.The function of particle trapping and separation of the optical tweezers array is verified by the experiments.According to the principle of multi-beam light interference,double-plate shearing interference can produce stripes with high brightness and sharp edge to insure the gradient force applied to the trapped particles.The high flexibility of the system is benefited from the easy adjustment of stripe period.The microfluidic chip made by glass is fabricated by chemical etching,with good optical property,mechanical strength and electricity insulation.And the glass microfluidic chip is suitable for the samples of cell and macromolecules,such as protein,because of weak adsorption of protein.Taking advantage of fewer sample consumption and higher efficiency,the combination of optical tweezers array with microfluidic chip could be one of important tools for micro-nano scale analytical technology in the near future.
出处
《中国激光》
EI
CAS
CSCD
北大核心
2010年第6期1659-1664,共6页
Chinese Journal of Lasers
基金
国家自然科学基金(20505002)
北京市优秀人才培养资助计划(20071D1600300394)
教育部新世纪优秀人才支持计划(NCET-08-0048)资助课题
关键词
生物光学
阵列光镊
微流控芯片
颗粒捕获
颗粒分选
biological optics
optical tweezers array
microfluidic chip
particle trapping
particle separation