期刊文献+

不均衡数据下基于阴性免疫的过抽样新算法 被引量:11

Over-sampling algorithm based on negative immune in imbalanced data sets learning
原文传递
导出
摘要 为提高不均衡数据集下算法分类性能,提出一种基于阴性免疫的过抽样算法.该算法利用阴性免疫实现少数类样本空间覆盖,以生成的检测器中心为人工生成的少数类样本.由于该算法利用的是多数类样本信息生成少数类样本,避免了人工少数类过抽样技术(SMOTE)生成的人工样本缺乏空间代表性的不足.通过实验将此算法与SMOTE算法及其改进算法进行比较,结果表明,该算法不仅有效提高了少数类样本的分类性能,而且总体分类性能也有了显著提高. To improve the classification performance of minority class,a over-sampling based on negative immune principle is proposed.In this approach,the negative immune algorithm is induced to generate a set of resprentive detectors to implement the overlapping of minority class space based on learning majority samples.The centers of resprentive detectors are regarded as the synthetic minority samples in order to resolve the imbalance problem.The majority samples are used to generate the synthetic minority samples,which can address the problem of synthetic minority oversampling technique(SMOTE)'s lacking the ability of overlapping whole minority space using the existing minority samples.Comparing the performance of the proposed approach with SMOTE and other improved algorithms,the experimental results show that the proposed method can not only effectively improve the classification performance of minority samples,but also significantly enhance the whole classification performance.
出处 《控制与决策》 EI CSCD 北大核心 2010年第6期867-872,878,共7页 Control and Decision
基金 中国博士后科学基金项目(20090450119) 中国博士点新教师基金项目(20092304120017) 黑龙江省博士后基金项目(LBH-Z08227)
关键词 不均衡数据 阴性免疫 过抽样算法 人工少数类过抽样技术 Imbalanced data sets Negative immune principle Over-sampling technique SMOTE
  • 相关文献

参考文献16

  • 1Huang J, Charles X Ling. Using AUC and accuracy in evaluating learning algorithms[J]. IEEE Trans on Knowledge and Data Engineering, 2005, 17(3): 299-310.
  • 2Cohen G, Hilario M, Hugonet Sax H S, et al. Learning from imbalanced data in surveillance of nosocomial infection[J]. Artificial Intelligence in Medicine, 2006, 37(5): 7-18.
  • 3Burez J, Van den Poel D. Handling class imbalance in customer churn prediction[J]. Expert Systems with Applications, 2009, 36(3): 4626-4636.
  • 4Zhou Z H, Liu X Y. The influence of class imbalance on cost-sensitive learning: An empirical study[C]. Proc of the 6th IEEE Int Conf on Data Mining. Hong Kong: IEEE Press, 2006: 970-974.
  • 5Liu X Y, Wu J X, Zhou Z H. Exploratory under-sampling for class-imbalance learning[C]. Proc of the 6th IEEE Int Conf on Data Mining. Hong Kong: IEEE Press, 2006: 965-969.
  • 6Zhou Z H, Liu X Y. Training cost-sensitive neural networks with methods addressing the class imbalance problem[J]. IEEE Trans on Knowledge and Data Engineering, 2006, 18(1): 63-77.
  • 7Liu X Y, Wu J, Zhou Z H. Exploratory under-sampling for class-imbalance learning[J]. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics, 2009, 39(2): 539- 550.
  • 8Chawla N V, Bowyer K W, Hall L O. SMOTE: Synthetic minority over-sampling technique[J]. J of Artificial Intelligence Research, 2002, 16(5): 321-357.
  • 9Han H, Wang W Y. Borderline-SMOTE: A new oversampling method in imbalanced data sets learnings[C]. Int Conf on Intelligent Computing. Hefei: IEEE Press, 2005, 3644: 878-887.
  • 10韩慧,王文渊,毛炳寰.不均衡数据集中基于Adaboost的过抽样算法[J].计算机工程,2007,33(10):207-209. 被引量:13

二级参考文献18

共引文献22

同被引文献159

引证文献11

二级引证文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部