期刊文献+

无人机侧向系统LPV模型降阶 被引量:2

LPV model reduction of UAV lateral system
原文传递
导出
摘要 无人机线性参变(LPV)模型能准确描述其非线性动态特性,但初始建立的LPV模型阶数较高,控制过程计算量较大.为此,提出一种基于平衡截断的LPV模型降阶方法.首先给出LPV系统的适定性、稳定性和平衡实现的定义;然后,提出LPV模型的平衡截断降阶方法.针对无人机侧向系统LTI模型,通过多项式拟合来建立LPV模型,并实现模型降阶.仿真结果表明,降阶模型的阶跃响应满足输出响应的精度要求. Unmanned aerial vehicle(UAV) linear parameter-varying(LPV) models can capture the possible nonlinear dynamics.When pursuing an LPV formulation,one ends up with models of relatively large dimension.Accordingly,finding control syntheses usually requires substantial computation.Therefore,an LPV model reduction theory based on balanced truncation method is proposed.First,the concepts of well-posedness,stability and balanced realizations in a linear fractional transformation framework are given.Then a generalization of the balanced truncation procedure for the LPV model reduction is presented.Finally,LPV model is built with linear time-invariable(LTI) models of UAV lateral system by polynomial fitting.The proposed method is applied to reduce the lateral system LPV model.Simulation results show that the step response of the reduced-order model meets the accuracy specification of output response.
出处 《控制与决策》 EI CSCD 北大核心 2010年第6期948-952,共5页 Control and Decision
基金 国家自然科学基金项目(60874073) 天津市自然科学基金项目(08JCYBJC11900) 天津市支撑计划项目(08ZCKFJC27900)
关键词 无人机 模型降阶 平衡截断 线性参变系统 UAV Model reduction Balanced truncation Linear parameter-varying(LPV) system
  • 相关文献

参考文献14

  • 1Kinoshita T, Imado F A. Study on the optimal flight control for an autonomous UAV[C]. Proc of the 2006 IEEE Int Conf on Mechatronics and Automation. Luoyang, 2006: 996-1001.
  • 2Santoso E Liu M, Egan G.H2 and H∞ robust autopilot synthesis for longitudinal flight of a special unmanned aerial vehicle: A comparative study[J]. IET Control Theory and Applications, 2008, 2(7): 583-594.
  • 3Subodb Bhandari, Richard Colgren. 14-DOF linear parameter varying model of a UAV helicopter using analytical techniques[C]. AIAA Modeling and Simulation Technologies Conf and Exhibit. Honolulu, 2008: 6523- 6541.
  • 4Farhood M, Dullerud G E. Control of nonstationary LPV systems[J]. Automatica, 2008, 44(8): 2108-2119.
  • 5Widowati, Bambangt R, Saragih R, etal. Model reduction for unstable LPV systems based on coprime factorizations and singular perturbation[C]. 5th Asian Control Conf. Melbourne, 2004: 963-970.
  • 6Hugh H, Liu T. Multi-objective design for an integrated flight control system: A combination with model reduction approach[C]. IEEE Int Symposium on Computer Aided Control System Design Proc. Glasgow, 2002: 21-26.
  • 7Moore B C. Principal component analysis in linear system: Controllability, observability, and model reduction[J]. IEEE Trans on Automatic Control, 1981, 26(1): 17-31.
  • 8Enns D. Model reduction with balanced realizations: An error bound and a frequency weighted generalization[C]. Proc IEEE Conf Decision Control. Las Vegas, 1984: 127- 132.
  • 9Glover K. All optimal hankel-norm approximations of linear multivariable systems and their L error bounds[J]. Int J of Control, 1984, 39(6): 1115-1193.
  • 10Lall S, Beck C. Error-bounds for balanced model-reduction of linear time-varying systems[J]. IEEE Trans on Automatic Control, 2003, 48(6): 946-956.

共引文献68

同被引文献2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部