期刊文献+

高温高压条件下甲醇裂解气-空气-稀释气层流火焰传播速度和马克斯坦长度研究 被引量:6

Experimental Study on Laminar Burning Velocity and Markstein Length of Dissociated Methanol-Air-Diluent Mixtures at Elevated Temperatures and Pressures
下载PDF
导出
摘要 利用球型发展火焰研究了不同燃空当量比(0.4~5.0)、初始温度(310K、360K和410K)、初始压力(0.1MPa、0.25MPa和0.5MPa)、稀释气(N2和CO2)和稀释度(0、0.1、0.2、0.3和0.4)条件下甲醇裂解气-空气-稀释气混合气的预混层流燃烧速度和马克斯坦长度。研究结果表明,甲醇裂解气-空气混合气层流燃烧速度在当量比为1.8处达到最大值,并且随初始温度的增加而增加,随初始压力的增加而减小。马克斯坦长度随初始温度的增加而减小,随初始压力的增加而减小。N2和CO2作为稀释气加入混合气降低了混合气层流燃烧速度,较稀混合气时马克斯坦长度随稀释度的增加而减小,化学计量比附近和较浓混合气时马克斯坦长度随稀释度的增加而增加。稀释气CO2对层流燃烧速度和马克斯坦长度的影响高于N2。 Laminar burning velocities and Markstein lengths of dissociated methanol-air-diluent mixtures were measured at different equivalence ratios, initial temperatures and pressures, diluents (N2/CO2) and dilution ratios by using the spherically expanding flame. The influences of these parameters on laminar burning velocity and Markstein length were analyzed. The results show that laminar burning velocities of the dissociated methanol-air mixture are increased with the increase of initial temperature and are decreased with the increase of initial pressure. Peak laminar burning velocity occurs at equivalence ratio of 1.8. Markstein lengths are decreased with the increase of initial temperature and initial pressure. Mixture diluents (N2 and CO2 ) will decrease laminar burning velocities of mixtures. Markstein length increases with the increase of dilution ratio exeept for very lean mixture ( φ less than 0.8). CO2 dilution has a larger impact on laminar flame speed compared to N2.
出处 《内燃机学报》 EI CAS CSCD 北大核心 2010年第3期214-220,共7页 Transactions of Csice
基金 国家自然科学基金重点资助项目(50636040) 国家自然科学基金创新群体资助项目(50521604) 国家重点基础研究计划资助项目(2007CB210006)
关键词 甲醇裂解气 稀释气 层流燃烧速度 马克斯坦长度 Dissociated methanol Diluent Laminar burning velocity Markstein length
  • 相关文献

参考文献2

二级参考文献14

  • 1方葛文,1988年
  • 2高孝洪,内燃机工作过程数值计算
  • 3Blarigan P V,Keller J O.A Hydrogen Fuelled In ternal Combustion Engine Designed for Single Speed/Power Operation[J].International Journal of Hydrogen Energy,2002,23(7):603-609.
  • 4Akansu S O,Dulger A,Kahraman N,et al.Inter nal Combustion Engines Fueled by Natural Gas Hy drogen Mixtures[J].International Journal of Hydrogen Energy,2004,29(14):1 527-1 539.
  • 5Bradley D,Hicks R A,Lawes M,et al.The Meas urement of Laminar Burning Velocities and Mark stein Numbers for Iso-Octane-Air and Iso-Octane-nHeptane-Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb[J].Combustion and Flame,1998,115(1/2):126-144.
  • 6Yu G,Law C K,Wu C K.Laminar Flame Speeds of Hydrogen Air Mixtures with Hydrogen Addition[J].Combustion andFlame,1986,63(1/2):339-347.
  • 7Van Maaren A,Thung D S,Goey L P H.Measurement of Flame Temperature and Adiabatic Burning Velocity of Methane/Air Mixtures[J].Combustion Sci Technol,1994(96):327-344.
  • 8Gu X J,Haq M Z,Lawes M,et al.Laminar Burning Velocity and Markstein Lengths of Methane Air Mixtures[J].Combustion and Flame,2000,121(1/ 2):41-58.
  • 9Bradley D,Gaskell P H,Gu X J.Burning Velocities,Markstein Lengths,and Flame Quenching for Spherical Methane-Air Flames:A Computational Study[J].Combustion and Flame,1996,104(1/2):176-198.
  • 10Liao S Y,Jiang D M,Gao J,et al.Measurements of Markstein Numbers and Laminar Burning Velocities for Liquefied Petroleum Gas Air Mixtures[J].Fuel,2004,83(10):1 281-1 288.

共引文献78

同被引文献38

  • 1黄健,王志,兰光,刘永喜,张贵新.微波等离子体点火的试验研究[J].工程热物理学报,2015,36(3):665-667. 被引量:6
  • 2方葛文,高孝洪.点燃式发动机掺烧甲醇裂解气的研究[J].内燃机学报,1993,11(2):131-136. 被引量:10
  • 3张勇,黄佐华,廖世勇,王倩,蒋德明.天然气-氢气-空气混合气的层流燃烧速度测定[J].内燃机学报,2006,24(2):97-103. 被引量:71
  • 4张勇,黄佐华,廖世勇,王倩,蒋德明.天然气/氢气燃烧特性研究[J].内燃机学报,2006,24(3):200-205. 被引量:21
  • 5刘兵,黄印玉,黄佐华,曾科,蒋德明,王锡斌.天然气掺氢火花点火发动机性能与排放研究[J].西安交通大学学报,2006,40(11):1268-1271. 被引量:9
  • 6Tiskoff J M, Drummond J P, Edwards T, et al. Future Direction of Supersonic Combustion Research [R]. AIAA 97-1017.
  • 7Bradley D, Hicks R A, Lawes M S, et al. The Mea- surement of Laminar Burning Velocity and Markstein Numbers for Iso- Octane- Air and Iso- Octane n- Hep- tane-Air Mixture at Elevated Temperature and Pressure in an Explosion Bomb [J]. Combustion and Flame, 1998, 115(1).
  • 8Huang Y, Sung C J, Eng J A. Laminar Flame of Prima- ry Reference Fuels and Reformer Gas Mixture[J]. Com- bustion and Flame, 2004, 139(2): 239-251.
  • 9Kamal K. Global Combustion Response of Practical Hy- drocarbon Fuels: n- Heptane, Iso- Octane, n- Deeane and Ethylene[ D ]. Ohio: Case Western Reserve University, 2007.
  • 10Prathap C, Anjan Ray, Ravi M R. Investigation of Dilu- tion Effects on the Laminar Burning Velocity and Flame Stability of Syngas Fuels at Atmospheric Condition [Jl. Combustion and Flame, 2008, 155(2): 145-160.

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部