期刊文献+

采用压痕实验确定线性强化弹塑性材料的弹性模量 被引量:2

DETERMINING THE ELASTIC MODULUS OF LINEARLY HARDENING ELASTOPLASTIC MATERIALS USING INDENTATION TESTS
原文传递
导出
摘要 利用有限元分析,该文尝试将双锥形压头压痕实验确定幂强化材料力学特性的方法应用于线性强化材料弹性模量的识别。研究发现,得到的弹性模量的误差与弹性模量和屈服极限的比值及线性强化参数m之间有密切的关系:弹性模量与屈服极限的比值小于45.4时,弹性模量的识别误差很小,可以认为识别结果不受材料线性强化特性的影响;弹性模量与屈服极限的比值大于45.4时,在线性强化参数m满足文中给定的条件时,可以认为识别结果不受材料线性强化特性的影响。 Recently,we have proposed an inverse approach to determine the elastic modulus of power-law engineering materials using indentation tests.In this study,we make an attempt to apply the method developed for power-law materials to the elastoplastic materials which exhibit a linearly hardening behaviour.It is found that the errors in the identified elastic modulus have a close relationship with the ratio of the elastic modulus to the yield strength and the linearly hardening parameter m.For the linearly hardening materials with ratios of the elastic modulus to the yield strength less than 45.4,the errors in the identified the elastic modulus are very small.For linearly hardening materials of which the ratios of the elastic modulus to the yield strength larger than 45.4,when the hardening parameter m satisfies the described conditions,the inverse approach developed for power-law materials may be applied to the materials exhibiting linearly hardening behaviours.
出处 《工程力学》 EI CSCD 北大核心 2010年第6期24-28,共5页 Engineering Mechanics
关键词 弹性模量 压痕 有限元法 弹塑性材料 线性强化 elastic modulus indentation finite element method elastoplastic material linearly hardening
  • 相关文献

参考文献10

  • 1Oliver W C, Pharr G M. An improved technique for determine hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Journal of Materials Research, 1992, 7(6): 1564--1583.
  • 2Cheng Y T, Cheng C M. Relationships between hardness, elastic modulus, and the work of indentation [J]. Applied Physics Letters, 1998, 73: 614--616.
  • 3Dao M, Chollacoop N, Van Vliet K J, Venkatesh T A, Suresh S. Computational modeling of the forward and reverse problems in instrumented sharp indentation [J]. Acta Materialia, 2001, 49: 3899--3918.
  • 4Ma D J, Ong Ch W, Wong S F. New relationship between Young's modulus and nonideally sharp indentation parameters [J]. Journal of Materials Research, 2004, 19(7): 2144--2151.
  • 5Choi Y, Lee H S, Kong D. Analysis of sharp-tipindentation load-lepth curve for contact area determination taking into account pile-up and sink-in effects [J]. Journal of Materials Research, 2004, 19(11): 3307--3315.
  • 6马德军,刘建敏,Chung Wo Ong,何家文.材料杨氏模量的纳米压入识别[J].中国科学(E辑),2004,34(5):493-509. 被引量:6
  • 7Wang L G, Ganor M, Rokhlin S I. Inverse scaling functions in nanoindentation with sharp indenters: Determination of material properties [J]. Journal of Materials Research, 2005, 20(4): 987-- 1001.
  • 8Cao Y P, Qian X Q, Lu J. On the determination of reduced Young's modulus and hardness of elastoplastic materials using a single sharp indenter [J]. Journal of Materials Research, 2006, 21(1): 215--224.
  • 9Qian x Q, Cao Y P, Zhang J Y, Raabe D, Yao Z H, Fei B J. An inverse approach to determine the mechanical properties of elastoplastic materials using indentation tests [J]. Cmc: Computer, Materials & Continua, 2008, 7(1): 33--42.
  • 10Qian x Q, Cao Y P, Lu J. Dependence of the representative strain on the hardening functions of metallic materials in indentation [J]. Scripta Materialia, 2007, 57(1): 57--60.

二级参考文献17

  • 1Pethica J B, Hutchings R, Oliver W C. Hardness measurement at penetration depth as small as 20 nm. Phil Mag A, 1983, 48(4): 593-606
  • 2Loubet J L, Georges J M, Marchesini O, et al. Vickers indentation curves of magnesium oxide (MgO). J Tribology, 1984, 106(1): 43-48
  • 3Newey D, Wilkens M A, Pollock H M. An ultra-low-load penetration hardness tester. J Phys E: Sci Instrum,1982, 15(1): 119-122
  • 4Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res, 1992, 7(6): 1564-1583
  • 5Pharr G M, Oliver W C, Brotzen F R. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J Mater Res, 1992, 7(3): 613617
  • 6Cheng Y T, Li Z, Cheng C M. in Fundamentals of Nanoindentation and Nanotribology Ⅱ. Baker S P, Cook R F, Corcoran S G, et al, eds. MRS Proc 649, Warrendale, 2001. Q1.1
  • 7Cheng Y T, Cheng C M. Relationships between hardness, elastic modulus, and the work of indentation.Appl Phys Lett, 1998, 73(5): 614-616
  • 8Giannakopoulos A E, Suresh S. Determination of elastoplastic properties by instrumented sharp indentation.Scripta Mater, 1999, 40(10): 1191-1198
  • 9Venkatesh T A, Van Vliet K J, Giannakopoulos A E, et al. Determination of elasto-plastic properties by instrumented sharp indentation: guidelines for property extraction. Scripta Mater, 2000, 42(9): 833-839
  • 10Dao M, Chollacoop N, Van Vliet K J, et al. Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater, 2001,49(19): 3899-3918

共引文献5

同被引文献21

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部