期刊文献+

有限元法求解广义热弹耦合一维热冲击问题 被引量:4

FINITE ELEMENT METHOD TO A GENERALIZED ONE-DIMENSIONAL THERMO-ELASTIC COUPLED PROBLEM SUBJECT TO A THERMAL SHOCK
原文传递
导出
摘要 为了避免积分变换方法在求解Lord-Shulman(L-S)型广义热弹性耦合问题时由于数值反变换所引起的计算精度降低的问题,该文应用直接有限元方法,求解了基于L-S型广义热弹性理论的窄条薄板受热冲击作用的动态响应问题,结果表明,该方法对求解L-S型广义热弹性耦合的一维问题具有很高的精度。该文给出了L-S型广义热弹性理论下的热弹耦合的控制方程,建立了L-S型的广义热弹性问题的虚位移原理,推导得到了相应的有限元方程。计算得到了窄条薄板中无量纲温度、无量纲位移及无量纲应力的分布规律,从温度分布图上可以清晰地观察到热波波前的特有属性,即热波波前处存在明显的温度梯度的突变。 In order to avoid the accuracy loss encountered in the process of numerical inversion in an integral transformation method adopted to solve generalized thermoelastic coupled problems in the context of Lord-Shulman(L-S) theory,the finite element method is used to solve a L-S type generalized thermoelastic coupled dynamic problem of a thin slim strip.The results show that the finite element method is very valid to obtain high calculation accuracy for L-S type generalized one-dimensional themoelastic coupled problem subjected to a thermal shock.The L-S type generalized thermoelastic coupled governing equations,the general form of virtual displacement principle as well as the corresponding finite element equations are formulated in this paper.The distributions of dimensionless temperature,dimensionless displacement and dimensionless stress are displayed graphically.From the distribution of temperate,the unique characteristic of heat wave can be observed clearly in the location of heat wave front where a sharp change of temperature gradient occurs.
出处 《工程力学》 EI CSCD 北大核心 2010年第6期35-39,50,共6页 Engineering Mechanics
基金 国家自然科学基金项目(10602021) 中国博士后科学基金特别资助项目(200902310)
关键词 广义热弹性理论 热冲击 热波 有限元 热弹耦合 generalized thermo-elastic theory thermal shock heat wave finite element method thermo-elastic couple
  • 相关文献

参考文献3

二级参考文献38

  • 1宋亚勤,张元冲,卢秉恒.理想导体中具有两个松弛时间的电磁热弹性波[J].力学学报,2003,35(6):735-739. 被引量:1
  • 2朱林利,郑晓静.基于Boltzmann方程在外加电场和磁场作用下热传导及电磁热弹性理论[J].兰州大学学报(自然科学版),2005,41(2):104-108. 被引量:3
  • 3宋亚勤,张元冲,徐红玉,卢秉恒.由运动内热源引起的磁热黏弹性问题的研究[J].力学学报,2005,37(4):501-510. 被引量:3
  • 4Ilioushin AA,Pobedria BE.Fundamental Mathematical Theory of Thermal Viscoelasticity.Nauka,Moscow,1970(in Russian)
  • 5Pobedria BE.Coupled problems in continuum mechanics.J Durability and Plasticity,1984,2:224~253
  • 6Koltunov MA.Creeping and Relaxation.IZD,Vishaya Shkola,Moscow,1976
  • 7Lord HW,Shulman Y.A generalized dynamic theory of thermo-elasticity.Journal of the Mechanics and Physics of Solids,1967,15:299~309
  • 8Green AE,Lindsay KE.Thermoelasticity.Journal of Elasticity,1972,2:1~7
  • 9Ezzat MA,EI-Karamany AS.The uniqueness and reciprocity theorems for generalized thermo-viscoelasticity for aniso-tropic media.Journal of Thermal Stresses,2002,25:507~522
  • 10Ezaat MA,Othman MI,EI-Karamany AS.State space approach to generalized thermo-viscoelasticity with two relaxation times.International Journal of Engineering Science,2002,40:283~302

共引文献11

同被引文献39

  • 1程乐锦,薛明德,唐羽烨,姚海民.大型空间结构的热-结构动力学分析[J].应用力学学报,2004,21(2):1-9. 被引量:22
  • 2梁森,陈花玲,陈天宁,梁天锡.蜂窝夹芯结构面内等效弹性参数的分析研究[J].航空材料学报,2004,24(3):26-31. 被引量:38
  • 3李智勇,刘锦阳,洪嘉振.作平面运动的二维平面板的热耦合动力学问题[J].动力学与控制学报,2006,4(2):114-121. 被引量:9
  • 4马玉娥,孙秦.动态热力耦合精细积分解法研究[J].机械强度,2007,29(3):483-486. 被引量:6
  • 5Lord H W,Shulman Y A.Generalized dynamical theory of thermoelasticity[J].Journal of Mechanics and Physics of Solids,1967,15(5):299―309.
  • 6Green A E,Lindsay K A.Thermoelasticity[J].Journal of Elasticity,1972,2(1):1―7.
  • 7Caputo M.Vibrations on an infinite viscoelastic layer with a dissipative memory[J].The Journal of the Acoustical Society of America,1974,56(3):897―904.
  • 8Bagley R L,Torvik P J.A theoretical basis for the application of fractional calculus to viscoelasticity[J].Journal of Rheology,1983,27(3):201―210.
  • 9Koeller R C.Applications of fractional calculus to the theory of viscoelasticity[J].Journal of Applied Mechanics,1984,51(2):299―307.
  • 10Rossikhin Y A,Shitikova M V.Applications of fractional calculus to dynamic problems of linear and nonlinear heredity mechanics of solids[J].Applied Mechanics Reviews,1997,50(1):15―67.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部