期刊文献+

索力对斜拉索动力特性的影响 被引量:3

EFFECTS OF INITIAL TENSION ON DYNAMIC CHARACTERISTICS OF STAY CABLES
原文传递
导出
摘要 针对大跨度斜拉桥拉索大幅振动控制问题,考虑由于索的初始垂度、大位移而引起的几何非线性因素的影响,同时考虑拉索与桥面连接条件和边界条件的影响,建立了拉索在参、强联合激励作用下的面内非线性振动方程。运用多尺度摄动方法,对其进行求解,以目前最长拉索为例,研究拉索初始索力的变化对其大幅振动的影响。研究结果表明:增加斜拉索的初始张拉力,将使索表现出的软弹簧特性变为硬弹簧特性,同时,拉索的振幅最大值对应的激励频率与拉索固有频率比值将由小于2改变为大于2。 Based on a large amplitude cable vibration problem induced by oscillations of a deck,the in-plane nonlinear governing equations of cables under the parametric and forced exciting are derived,in which the static sag and the geometric nonlinearity of the cable are considered and the simple connection condition and boundary condition of the cables and deck are taken into account.Furthermore,the multi-scale perturbation method is applied to analyzing the parametric and forced resonances of stay cables.Then,the effects of initial tension on dynamic characteristics of a longest span cable in a cable stayed bridge are investigated.It is reached as a conclusion that the augment of cable tension will make the softening behaviors of the cable change into hardening behaviors,and that the ratio of pumping frequency to natural frequency will increase from less than 2 into more than 2.
出处 《工程力学》 EI CSCD 北大核心 2010年第6期83-88,共6页 Engineering Mechanics
基金 国家自然科学基金项目(10772065) 湖南大学人才引进配套项目和博士后项目(521105621 521106097) 湖南省博士后计划外项目(897205006)
关键词 斜拉索 张拉力 斜拉桥 多尺度法 非线性振动 inclined cables tension cable stayed bridge multi-scale perturbation method nonlinear vibration
  • 相关文献

参考文献17

  • 1Bolotin V V. The dynamic stability of elastic systems [M]. San Francisco: Holden-Day, 1964.
  • 2Murthy G S S, Ramakrishma B S. Nonlinear character of resonance in stretched strings [J]. Journal of the Acoustical Society of America, 1965, 38(3): 461--471.
  • 3Rega G, Vestroni F, Benedettini F. Parametric analysis of large amplitude free vibrations of a suspended cable [J]. International Journal of Solids and Structures, 1984, 20(2): 95-- 105.
  • 4Luongo A, Rega G, Vestroni. planar non-linear flee vibrations of an elastic cable [J]. International Journal of Non-Linear Mechanics, 1984, 19(1): 39-- 52.
  • 5Nayfeh A H. Quenching of primary resonance by a super harmonic resonance [J]. Journal of Sound and Vibration, 1984, 92: 363--377.
  • 6Takahashi K, Konishi Y. Non-linear vibrations of cables in three dimensions, part I: non-linear free vibrations [J]. Journal of Sotmd and Vibration, 1987, 118(1): 69--84.
  • 7Warnitchai P, Fujino Y, Susumpow T. A non-linear dynamic model for cables and its application to a cablestructure system [J]. Journal of Sound and Vibration, 1995, 187(4): 695--712.
  • 8Matsumoto M, Shiraishi N, Shirato H. Rain-wind induced vibration of cables of cable-stayed bridge [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 43(1-3): 2011 --2022.
  • 9亢战,钟万勰.斜拉桥参数共振问题的数值研究[J].土木工程学报,1998,31(4):14-22. 被引量:94
  • 10Gattulli V, Lepidi M. Nonlinear interactions in the planar dynamics of cable-stayed beam [J]. International Journal of Solids and Structures, 2003, 40(18): 4729--4748.

二级参考文献55

  • 1王修勇,何旭辉,陈政清.斜拉索-阻尼器系统的动力特性分析[J].铁道科学与工程学报,2001(4):68-72. 被引量:13
  • 2郑罡,倪一清,高赞明,徐兴.斜拉索张力测试和参数评估的理论和应用[J].土木工程学报,2005,38(3):64-69. 被引量:36
  • 3苏成,徐郁峰,韩大建.频率法测量索力中的参数分析与索抗弯刚度的识别[J].公路交通科技,2005,22(5):75-78. 被引量:67
  • 4汪至刚.大跨度斜拉桥拉索的振动与控制[D].杭 州:浙江大学,2000.
  • 5A H 奈克 D T 穆克.非线性振动[M].北京:高等教育出版社,1996..
  • 6J. L. Lilien, A. Pinto Da Costa. Vibration amplitudes caused by parametric excitation of cable stayed structures[J]. Journal of Sound and vibration 174 (2) 69 - 90,1994.
  • 7Chris Geurts, Ton Vrouwenvelder, Piet van Staalduien, Jaco Reusink (Netherlands). Numerical modelling of rain-windinduced vibration: Erasmus Bridge, Rotterdam [J]. Structural Engineering International, 1998.
  • 8A. Pinto Da Costa, J. A. C. Martins, et al. Oscillations of bridge stay cables induced by periodic motions of deck and/ or towers [J]. Journal of Enginecring Mechanics, 122 (7), 1996.
  • 9Michel Virlogeux (France). Cable vibration in cable-stayed bridges [J]. Bridge Dynamic 213 - 233, 1998.
  • 10H. Max Irvine. Cable Structure [M]. The MIT Press, 1981.

共引文献166

同被引文献41

引证文献3

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部