摘要
设C是Banach空间E的非空闭凸子集,{Ti}ik=1为C上的一族广义渐近拟非扩张自映射,f:C→C为压缩映射,Wn为修正的W-映射.引入迭代算法:xn+1=λnf(xn)+(1-λn)Wn,并证明了由此产生的迭代序列{xn}强收敛到T1,T2,…,Tk的一个公共不动点.
Let C be a nonempty closed convex subset of a Banach space E, {Ti}i-1^k is a finite family of generalized asymptotically quasi-nonexpansive mappings of C into itself, f is a fixed contractive mapping, and Wn, is a modified W -mapping. We introduce an iterative method defined by xn+1=λnf(xn)+(1-λn)Wn, and prove that the iterative sequence {xn } converges strongly to a common fixed point of T1,T2,…,Tk.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第6期143-147,共5页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金资助项目(10771173)
关键词
强收敛
广义渐近拟非扩张映射
迭代序列
修正的W-映射
strong convergence
generalized asymptotically quasi-nonexpansive mapping
iteration sequence
modified W -mapping