期刊文献+

信息熵在粗糙集信息检索模型中的应用 被引量:2

Information Retrieval Models Based on Information Entropy Rough Sets and Its Applications
下载PDF
导出
摘要 在信息检索过程中,由于文档中存在大量的多义和近义现象,导致不确定性出现,这将影响检索的性能。为此我们采用信息熵和粗糙集理论来处理这类不确定性问题。首先计算训练文档集中的词之间的信息熵,对信息熵做模糊聚类来构造词之间的等价关系,然后借助于该等价关系提出并实现了一个以粗糙集上下近似为基础的信息检索模型,通过实验的测试,该模型能够提高信息检索的效率。 In the processing of information retrieval, the existence of polysemy and synonymy would lead to uncertainty, which reduce the effective of information retrieval. In this paper, a model based on information entropy is proposed, in which the uncertainty is captured by rough sets. At first, we count the information entropy between the words of the training corpus, and then the mutual information is employed to build an equivalent relation through fuzzy clustering. We propose and implement an information retrieval model based on upper and lower approximations of rough sets, which resort to equivalent relation. Experiments show that the model can get improvement of information retrieval.
出处 《模糊系统与数学》 CSCD 北大核心 2010年第3期149-153,共5页 Fuzzy Systems and Mathematics
基金 江西省科技支撑项目(200720015)
关键词 信息熵 模糊聚类 粗糙集 信息检索 Information Entropy Fuzzy Clustering Rough Sets Information Retrieval
  • 相关文献

参考文献12

二级参考文献31

  • 1刘邱云,吴根秀,付雪峰.基于可传递信度模型的k-NN分类规则[J].江西师范大学学报(自然科学版),2004,28(3):221-223. 被引量:2
  • 2付雪峰,刘邱云,王明文.基于互信息的粗糙集信息检索模型[J].山东大学学报(理学版),2006,41(3):17-19. 被引量:2
  • 3曾黄麟.粗集理论及其应用--关于数据推理的新方法[M].重庆:重庆大学出版社,1998..
  • 4Quinlan J R.Induction of decision tree[J].Machine Learning, 1986, 1:81-106.
  • 5Pawlak Z.Rough sets theoretical aspects of reasoning aleut data[M].Dordrect:Kluwer Academic Publishers, 1991.
  • 6Ziarko W.Variable precision rough set model[J].Journal of Computer and System Sciences, 1993,46:39-59.
  • 7[1]Dubois D,Prade H. Putting rough sets and fuzzy sets together [A]. Intelligent Decision Support: Handbook of Applications and Advanced of the Rough Set Theory [C].Boston: Slowinski R ED, Kluwer Academic Publishers, 1992. 203 - 222.
  • 8[2]Yao Y Y. A comparative study of fuzzy sets and rough sets [J]. Information Sciences, 1998,109 (1-4): 227 -242.
  • 9[4]Keller J M, Gray M R, Givens J A. A fuzzy k-nearest neighbor algorithm [J]. IEEE Transactions on System Man and Cybernetics, 1985,15 (4) :580 - 585.
  • 10[5]Yang Y,Pederen J P. A comparative study on feature selection in text categorization [A]. Proceeding of the Fourteenth International Conference on Machine Learning (ICML97) [C]. Nashville Tennessee USA :Morgan Kaufmann, 1997.412 - 420.

共引文献101

同被引文献13

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部