期刊文献+

零误差密度最大算法的分析研究

The Analysis of Zero-error Density Maximization Algorithm
下载PDF
导出
摘要 前馈神经网络的学习通常以均方误差为目标函数(MSE),易陷入局部极小,而零误差密度最大算法(Z-EDM)以误差在零点的概率密度函数为神经网络新的目标函数,能够达到全局最优.将Z-EDM算法应用到BP网络中,并通过仿真将两者进行了比较,实验结果表明,Z-EDM算法在分类方面要明显优于MSE算法.并且对这一算法进行了分析,可知以优化此目标函数的神经网络的学习仍是基于经验风险最小化原则,通过仿真将基于Z-EDM算法的BP网络与支持向量机(SVM)在两分类方面进行比较,结果表明此算法对于某些数据集具有与SVM近似的性能,但总体上性能仍不及基于结构风险最小化的SVM. Feed-forward neural networks,which usually takes Mean Square Error criteria(MSE)as cost function,is easily to drop in local minimization.Zero-Error Density Maximization algorithm,s(Z-EDM)using error density at origin as the new cost function can reach global optimization.In this paper,Z-EDM algorithm is applied into BP neural networks and the simulation results show that Z-EDM is clearly more powerful in classifying than MSE.The analysis of Z-EDM algorithm suggests training neural networks with this new cost function is still based on empirical risk minimization principle.Support Vector Machine(SVM)and BP based on Z-EDM are compared in classification.Simulation results show that Z-EDM owns similar performance as SVM in certain datasets,but is generally inferior to SVMwith structural risk minimization principle.
出处 《江西理工大学学报》 CAS 2010年第3期41-43,共3页 Journal of Jiangxi University of Science and Technology
基金 江西省教育厅资助项目(GJJ09253)
关键词 标准BP算法 零误差密度最大算法 支持向量机 BP algorithm zero-error density maximization SVM
  • 相关文献

参考文献6

  • 1Silva L,AlexandreL,Marque s de S'a.Neural Network Classification:Maximizing Zero-Error Density[C].In ICAPR2005,LNCS3686,2005,127-135.
  • 2Silva L,Alexandre L,Marques de S'a.New Developments of the Z-EDM Algorithm[C].In Proceedings of the Sixth International Conference Intelligent Systems Design and Applications,2006,(1):1067-1072.
  • 3许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 4Koiran P.NN with Quadratic VC Dimension[M].Advances in NIPS,MIT Press,1996.
  • 5Blake C.L.Merz C.J.UCI Repository of Machine Learning Databases[J/oL].University of California,Irvine,Dept.of Infor mation and Computer Sciences,http://www.ics.uci.edu/~mlearn/MLReposit ory.html.1998.
  • 6刘陶,何建军,谢永.基于遗传神经网络的手写体数字识别算法的探讨[J].江西理工大学学报,2007,28(6):29-31. 被引量:2

二级参考文献28

  • 1王永乾,吕蓉.基于BP网络的手写体数字识别方法[J].山东电子,2004(3). 被引量:5
  • 2范艳峰,肖乐,甄彤.自由手写体数字识别技术研究[J].计算机工程,2005,31(10):168-170. 被引量:8
  • 3[1]Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers[A]. The 5th Annual ACM Workshop on COLT [C]. Pittsburgh:ACM Press, 1992. 144-152.
  • 4[2]Cortes C, Vapnik V N. Support vector networks[J].Machine Learning, 1995, 20(3): 273-297.
  • 5[3]Drucker H, Burges C J C, Kaufman L, et al. Support vector regression machines [A]. Advances in Neural Information Processing Systems[C]. Cambridge: MIT Press, 1997. 155-161.
  • 6[4]Vapnik V N, Golowich S, Smola A. Support vector method for function approximation, regression estimation and signal processing [A]. Advances in Neural Information Processing Systems [ C ].Cambridge: MIT Press, 1997. 281-287.
  • 7[5]Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 8[6]Vapnik V N. Statistical Learning Theory [M]. New York: Wiley, 1998.
  • 9[7]Vapnik V N. The Nature of Statistical Learning Theory [M]. 2nd edition. New York: SpringerVerlag, 1999.
  • 10[8]Platt J. Fast training of support vector machines using sequential minimal optimization [ A ]. Advances in Kernel Methods - Support Vector Learning [C].Cambridge: MIT Press, 1999. 185-208.

共引文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部