期刊文献+

一类p-Laplacian方程边值问题正解的存在性

Existence of Positive Solutions for Boundary Value Problem with p-Laplacian Based on Nonlinear Terms Sign-Changing
下载PDF
导出
摘要 利用不动点指数理论,考虑了边值问题{(BVP)(φp(u′(t)))′+f(u(t))=0,0<t<1u′(0)=u(1)=0在非线性项f可变号的情况下2个正解存在的充分条件,推广和改进了现有文献的结果. This paper deals with the p-Laplacian equation:{(φp(u'(t)))'+f(u(t))=0,0〈t〈1 u'(0)=u(1)=0,where φp(x)=|x|^p-2x,p〉1.By using the fixed point index theory in cones,sufficient conditions for the existence of at least two positive solutions to the boundary value problem mentioned above are established.The present results are generalized and improved.
作者 完巧玲
机构地区 陇东学院数学系
出处 《甘肃科学学报》 2010年第2期13-16,共4页 Journal of Gansu Sciences
基金 甘肃省高校研究生导师科研基金(0810-03)
关键词 P-LAPLACIAN算子 不动点指数理论 正解 边值问题 p-Laplacian operator the fixed point index theory Positive solutions Boundary value problem
  • 相关文献

参考文献10

  • 1张晓燕,孙经先.一维奇异p-Laplacian方程多解的存在性[J].数学物理学报(A辑),2006,26(1):143-149. 被引量:17
  • 2Su H,Wei Z L,Xu F Y. The Existence of Positive Solutions for Nonlinear Singular Boundary Value System with p-Laplaclan[J]. Applied Mathematics and Computation, 2006, 181:826-836.
  • 3熊明,王绍荣.一维p-Laplacian方程奇异边值问题的正解[J].数学学报(中文版),2006,49(1):161-168. 被引量:9
  • 4Li Z Y, Yan S L,Ge W G. Multiple Positive Solutions to a Nonlinear Two-point Boundary Value Problem with p-Laplacian[J]. J. Math. Research and Exposition, 2006,26 (3), 480- 488.
  • 5Lv H S,Doaal O'Regan and Zhong C K. Multiple Positive Solutions for the One-dimensional Singular p-Laplaeian[J]. Applied Mathematics and Computation, 2002,133 : 407-422.
  • 6Zhao D X, Wang H Z, Ge W G. Existence of Triple Positive Solutions to a Class of p-Laplacian Boundary Value Problems [J]. J. Math. anal. appl. , 2007,328 :972-983.
  • 7白定勇,马如云.p-Laplacian算子型奇异边值问题的正解[J].数学物理学报(A辑),2005,25(2):166-170. 被引量:16
  • 8Li Y X. Positive Solutions of Second-order Boundary Value Problems with Sign-changing Nonlinear Terms[J]. J. Math. anal. appl., 2003,282 : 232-240.
  • 9Guo D, Lakshmikantham V. Nonlinear Problems in Abstract Cones[M]. New York : Academic Press, 1988.
  • 10吴红萍.一类二阶边值问题2个正解的存在性[J].甘肃科学学报,2009,21(2):4-6. 被引量:5

二级参考文献34

  • 1宋福民.Banach空间中两点边值问题的解[J].数学年刊(A辑),1993,1(6):692-697. 被引量:39
  • 2白定勇,马如云.p-Laplacian算子型奇异边值问题的正解[J].数学物理学报(A辑),2005,25(2):166-170. 被引量:16
  • 3吴红萍.二阶Dirichlet边值问题的正解[J].甘肃科学学报,2007,19(1):53-55. 被引量:5
  • 4Hardy G. H., Littlewood J. E., Polya G., Inequalities, Cambrridge: Cambrridge University Press 2nd Edition,1952.
  • 5Wang J. Y., The existence of Positive solution for the one-dimensional p-Laplacian, Proc. Amer. Math. Soc.,1997, 125:2275-2283.
  • 6Yao Q. L., Lu H., Positive solution of one-dimensional singular p-Laplace equations, Acta Mathematiea Sinica, Chinese Series, 1998 41: 1255-1264.
  • 7Liu J. Q., Xiong M., Positive solutions for singular two point boundary value problem for p-Laplacian equation,(preprint).
  • 8Agazwal R. P. and O'Regan D., Nonlinear superlinear singular and nonsingular second order boundary value problems, J. Differential Eq., 1998, 143: 60-95.
  • 9Chang K.C., Infinite dimensional theory and multiple solution problems, Birkhauser Boston, 1993.
  • 10Wang Junyu.The existence of positive solutions for the one-dimensional p-Laplacian.Proc Amer Math Soc,1997,125:2275-2283.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部