期刊文献+

基于LPCC和能量熵的端点检测 被引量:6

Voice Activity Detection Based on LPCC and Spectrum Entropy
下载PDF
导出
摘要 为提高语音端点检测系统在低信噪比下检测的准确性,提出了一种基于倒谱特征和谱熵的端点检测算法。首先,根据分析得到待测语音帧的倒谱特征量,然后计算该特征量分别在通过训练得到的语音和噪声的高斯混合模型下的似然概率,通过两者概率的比较作出有声无声初判决;联合能量熵端点检测结果得到最终判决,最后通过Hangover机制最大限度的保护了语音。实验结果表明,此方法改善了能量熵端点检测法在babble噪声下的劣势,且在不同噪声环境下均优于G.729 Annex B的性能。 In order to improve the accuracy of Voice Activity Detection(VAD) in low SNR noisy environments, an algorithm based on Linear Predictive Cepstral Coefficient (LPCC) and energy entropy is proposed. First, the LPCC extracted from the input speech is imported into speech model and noise model, both of which are Gans- sian Mixture Model (GMM) separately, to calculate the likelihood ratio of speech to noise. The first-stage VAD decision is made based on the likelihood ratio. Then the spectrum entropy is applied to the second decision- making stage. Finally, a mechanism called Hangover is used to better protect the speech. Experiment results show that the new algorithm can compensate the drawbacks of spectrum entropy method in babble noisy environ- ment. Furthermore, it outperforms the G. 729 Annex B under various noisy environments.
出处 《电讯技术》 北大核心 2010年第6期41-45,共5页 Telecommunication Engineering
基金 国家自然科学基金资助项目(60572081)~~
关键词 语音信号处理 话音端点检测 谱熵 线性预测系数 倒谱系数 高斯混合模型 speech signal processing voice activity detection(VAD) spectrum entropy linear prediction coefficient (LPC) linear predictive cepstral coefficient (LPCC) Gaussian mixture model(GMM)
  • 相关文献

参考文献9

  • 1徐大为,吴边,赵建伟,刘重庆.一种噪声环境下的实时语音端点检测算法[J].计算机工程与应用,2003,39(1):115-117. 被引量:30
  • 2Junqua J C,Mak B,Reaves B.A robust algorithm for word boundary detection in the presence of noise[J].IEEE Transactions on Speech and Audio Processing,1994,2(3):406-412.
  • 3Beritelli F,Casale S,Ruggeri G,et al.Performances evaluation and comparision of G.729/AMR/fuzzy voice activity detectors[J].IEEE Signal Processing Letters,2002,9(3):85-88.
  • 4Pencak J,Neloson D.The NP speech activity detection algorithm[C]//Proceedings of 1995 International Conference on Acoustics,Speech and Signal Processing.Detroit,MI,USA:[s.n.],1995:381-384.
  • 5Reynolds D,Rose R.Robust text-independent speaker identification using Gaussian mixture speaker models[J].IEEE Transactions on Speech and Audio Processing,1995,3(1):72-83.
  • 6李晔,张仁智,崔慧娟,唐昆.低信噪比下基于谱熵的语音端点检测算法[J].清华大学学报(自然科学版),2005,45(10):1397-1400. 被引量:37
  • 7Reynolds D A,Quatieri T F,Dunn R B.Speaker Verification Using Adapted Gaussian Mixture Models[J].Digital Signal Processing,2000,10(1):19-41.
  • 8Dempster A D,Laird N M,Rubin D B.Maximum likelihood from incomplete data via the EM algorithm[J].Journal of the Royal Statistical Society,1977,39(2):1-37.
  • 9Gish H,Schmid M.Text-Independent Speaker Identification[J].IEEE Signal Processing Magazine,1994,11(4):18-32.

二级参考文献8

  • 1Junqua J C, Mak B, Reaves B. A robust algorithm for word boundary detection in the presence of noise [J]. IEEE Transactions on speech and Audio Processing, 1994, 2(3):406-412.
  • 2Beritelli F, Casale S, Ruggeri G, et al. Performances evaluation and comparision of G. 729/AMR/fuzzy voice activity detectors [J]. IEEE Signal Processing Letters,2002, 9(3): 85-88.
  • 3Pencak J, Neloson D. The NP speech activity detection algorithm [J]. Int Conf Acoustics, Speech and Signal Processing, 1995. 381 - 384.
  • 4Nemer E, Goubran R, Mahmoud S. Robust voice activity detection using higher-order statistics in the LPC residual domain [J]. IEEE Trans Speech and Audio Processing,2001, 9(3): 217-231.
  • 5Woo K H, Yang T Y, Park K J, et al. Robust voice activity detection algorithm for estimating noise spectrum [J].Electronics Letters, 2000, 36(2) : 180 - 181.
  • 6迟惠生 杨行峻 唐昆.语音信号数字处理[M].北京:电子工业出版社,1995..
  • 7MHSavoji.ARobustAlgorithmforAccurateEndpointingofSpeechJ[].Space Communications.1989
  • 8徐大为,吴边,赵建伟,刘重庆.一种噪声环境下的实时语音端点检测算法[J].计算机工程与应用,2003,39(1):115-117. 被引量:30

共引文献62

同被引文献50

  • 1蔡志杰,孙洁.改进的C_0复杂度及其应用[J].复旦学报(自然科学版),2008,47(6):791-796. 被引量:11
  • 2肖述才,王作英.端点检测中的一种新的对数能量特征[J].电声技术,2004,28(6):37-41. 被引量:12
  • 3赵彦平,赵晓晖.用于语音端点检测的鲁棒性特征提取新方法[J].吉林大学学报(工学版),2006,36(1):77-81. 被引量:6
  • 4范影乐,武传艳,李轶,庞全.基于C_0复杂度的语音端点检测技术研究[J].传感技术学报,2006,19(3):750-753. 被引量:7
  • 5LAWRENCE R, JUANG Biing-Hwang. Fundamentals of speech rec- ognition[ M ]. New York : Prentice Hall, 1999.
  • 6Rabiner L R, Sambur M R. An algorithm for determining the end- points of isolated utterances[J]. Bell Syst. Teeh, 1975, 54:297 - 315.
  • 7Renevey P, Drygajlo A. Entropy based voice activity detection in very noise conditions[J]//Proc. Eurospeech,2001:1887 - 1890.
  • 8ITU-T Recommendation G. 729 Annex B. A silence compression scheme for G. 729 optimized for teminals conforming to Recommen- dation V.70[Z]. 1996.
  • 9ETSI EN 301 708. Digital cellular telecommunications systems (Phase 2 + ) ; Voice Activity Detector (VAD) for Adaptive Multi - Rate (AMR) speech traffic channels; General description (GSM06.94 version 7.1.1 Release 1998). V 7.1.1. 1999[Z].
  • 10Martin R. Noise power spectral density estimation based on optimal smoothing and mininum statistics[J]. IEEE Trans. Speech Audio Processing, 2001,9:504 -512.

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部