期刊文献+

纯Mo棒在镦粗过程中的织构和组织对其横向塑性的影响 被引量:1

Effects of texture and microstructure on transverse ductility of pure molybdenum bars in upset process
下载PDF
导出
摘要 对锻造纯Mo棒进行不同变形量的镦粗加工,观察其在此过程中的室温横向弯曲性能和织构演变。结果表明:锻造变形85%的纯Mo棒的横向弯曲伸长率仅为0.5%,经镦粗变形其横向塑性得到提高;镦粗变形50%和85%后,伸长率分别达到1.5%和5.0%,其原因是在纯Mo棒中形成的纵向伸长的纤维组织被横向扭曲,且晶粒间相互穿插,这种组织由<011>织构的组织演变而来;锻造Mo棒中形成<011>纤维织构,这种织构对Mo棒的横向塑性不利,经镦粗变形,<011>纤维织构转变为<001>和<111>纤维织构;锻态Mo棒的断裂方式为沿晶断裂,镦粗变形后,断裂方式主要为穿晶断裂;断口还发现有"分层韧化"现象出现。 The transverse elongations and textures of pure molybdenum bars manufactured by upset with different amounts of deformation were investigated at room temperature.The results show that the transverse elongation of the forged Mo bars with 85% deformation is 0.5%,which is greatly improved by the upset process.By upset with 50% and 85% deformations,the transverse elongations of the bars are only 1.5% and 5.0%,respectively,because the fiber structures in the longitudinal direction are distorted along with the transverse direction and interpenetrate each other,and these structures are developed from 011 fiber;which has a bad effect on the transverse ductility of the forged Mo bars.After the upset deformation,the fiber texture of 011 changes to 001 and 111.The fracture mode changes from intergranular to a transgranular and shows a ductile laminate fracture mechanism.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2010年第5期859-865,共7页 The Chinese Journal of Nonferrous Metals
基金 国家高技术研究发展计划资助项目(2006AA03Z517) 湖南省自然科学基金资助项目(05JJ30095)
关键词 纯Mo棒 镦粗 横向塑性 织构 沿晶断裂 穿晶断裂 pure molybdenum bar upset transverse ductility texture intergranular fracture transgranular fracture
  • 相关文献

参考文献18

  • 1JOHNSON A A.The ductile-brittle transition in body-centred cubic transition metals[J].Philos Mag,1962,74:177-196.
  • 2WRONSKI A S,CHILTON A C,GAPRON E M.The ductile-brittle transition in polycrystalline[J].Acta Metall,1969,17:751-755.
  • 3PASSMORE E M.Correlation of temperature and grain size effects in the ductile-brittle transition of molybdenum[J].Philos Mag,1965,111:441-450.
  • 4KUMAR A,EYRE B L.Grain boundary segregation and intergranular fracture in molybdenum[J].Proceedings of the Royal Society of London,1980,A370:431-458.
  • 5WADSWORTH J,MORSE G R,CHEWEY P M.The microstructure and mechanical properties of a welded molybdenum alloy[J].Mater Sci Eng,1983,59:257-273.
  • 6WADSWORTH J,PACKER C M,CHEWEY P M,COONS W C.A microstructure investigation of the origin of brittle behavior in the transverse direction in Mo-based alloy bars[J].Metall Trans A,1984,15:1741-1752.
  • 7HIRAOKA Y,HIROKI I,TAKESHI I.Application of fractography to the study of carbon diffusion in molybdenum[J].Journal of Alloys and Compounds,2004,377:127-132.
  • 8AGNEW S R,LEONHARDT T.The low-temperature mechanical behavior of molybdenum-rhenium[J].JOM,2003,55(10):25-29.
  • 9HIRAOKA Y,OGUSU T,YOSISIZAWA N.Decrease of yield strength in molybdenum by adding small amounts of group VIII elements[J].Journal of Alloys and Compounds,2004,381:192-196.
  • 10INOUE T,HIRAOKA Y,SUKEDAI E.Hardening behavior of dilute Mo-Ti alloys by two-step heat-treatment[J].Int J Refract Met Hard Mater,2007,25:138-143.

二级参考文献29

  • 1潘叶金,尹茜,陈中春.掺La_2O_3钼丝的显微组织与强韧化[J].中南工业大学学报,1995,26(2):196-199. 被引量:6
  • 2Shimizu M, lton K, Sato H, et al. Solar thermal thruster made of single crystal molybdenum[J]. Aeta Astronautiea, 1997, 41(1): 23-28.
  • 3Kumar A, Eyre B L. Grain boundary segregation and intergranular fracture in molybdenum[J]. Proc R Soe Lond A Math Phys Sci, 1980, A370(1743): 431-458.
  • 4Yosizawa N, Hiraoka Y, Kohi S, et al. Low-temperature fracture behavior of Mo alloys with a small addition of nickel or palladium source[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2000, 47(8): 824-829.
  • 5Hiraoka Y, Hoshika T. Parameter representing low-temperature fraeture strength in molybdenum having an elongated and large grain strueture[J], International Journal of Refractory Metals and Hard Materials, 1999, 17(5): 339-344,
  • 6Inoue T, Hiraoka Y, Sukedai E, et al. Hardening behavior of dilute Mo-Ti alloys by two-step heat-treatment[J]. International Journal of Refractory Metals and Hard Materials, 2007, 25(2): 138-143.
  • 7Agnew S R, Leonhardt T. The low-temperature mechanical behavior of molybdenum-rhenium[J]. JOM, 2003, 55(10): 25-29.
  • 8Wadsworth J, Packer C M, Chewey P M, et al. A microstructure investigation of the origin of brittle behavior in the transverse direction in Mo-based alloy bars[J]. Metallurgical Transactions A, 1984, 15(9): 1741-1752.
  • 9Hiraoka Y, Iwasawa H, Inoue T, et al. Application of fractography to the study of carbon diffusion in molybdenum[J]. Journal of Alloys and Compounds, 2004, 377(1/2): 127-132.
  • 10Mil'man Y V, Rachek A P, Kurdyumov G G, et al. the problem of 45 degree embrittlement of low-alloy sheet molybdenum[J]. Fiz Metal MetaUoved, 1979, 48(2): 309-314.

共引文献1

同被引文献5

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部