摘要
The temperature curve in the solar chromosphere has puzzled astronomers for a long time. Referring to the structure of supergranular cells, we propose an inductive heating model. It mainly includes the following three steps. (1) A small-scale dynamo exists in the supergranulation and produces alternating small-scale magnetic fluxes; (2) The supergranular flow distributes these small-scale fluxes according to a regular pattern; (3) A skin effect occurs in the alternating and regularly-distributed magnetic fields. The induced current is concentrated near the transition region and heats it by resistive dissipation.
The temperature curve in the solar chromosphere has puzzled astronomers for a long time. Referring to the structure of supergranular cells, we propose an inductive heating model. It mainly includes the following three steps. (1) A small-scale dynamo exists in the supergranulation and produces alternating small-scale magnetic fluxes; (2) The supergranular flow distributes these small-scale fluxes according to a regular pattern; (3) A skin effect occurs in the alternating and regularly-distributed magnetic fields. The induced current is concentrated near the transition region and heats it by resistive dissipation.
基金
supported by the National Natural Science Foundation of China (Grant Nos 40921063, 40874078, 40890161, 40890162, 40974107 and 40704030)
the 973 project under grant 2006CB806304
the Specialized Research Fund for State Key Laboratories