期刊文献+

纳米复合材料(Cu/AlN)点焊电极的失效机制分析 被引量:1

Analysis on Failure Mechanism of Nano-composite (Cu/AlN) Electrodes for Spot Welding
下载PDF
导出
摘要 通过高能球磨制备铜基纳米氮化铝复合粉体(Cu/AlN),用粉末冶金方法制备Cu/AlN点焊电极并装机进行镀锌薄钢板点焊试验。用XRD、SEM、TEM等表征失效电极的组织形貌,分析电极的失效机制及失效原因。结果表明:铜基纳米复合材料(Cu/AlN)点焊电极的主要失效机制是:"蘑菇化"变形、坑蚀、粘结等,未见电极表面合金化生成新相。Cu/AlN点焊电极使用性能优于铸态商用(CuCrZr)点焊电极,主要因为纳米AlN颗粒的弥散强化作用及其优异的导热性能。 Performances of nano-composite(Cu/AlN)electrodes for spot welding were rationalized when it failed after welding 0.8mm thickness galvanized steel sheets with a welding current of 7.5kA,welding pressure of 0.4MPa,welding 8 cycles.The electrode was made by powder metallurgy(PM)using nano-AlN and copper composite powders through high-energy ball-milling.The morphologies and micro-structures of the electrodes after failure were characterized using X-ray diffractometry(XRD)、scanning eletron microscopy(SEM)、transmission electron microscopy(TEM)etc.Its failure reasons were analyzed.The results show that the failure of nano-composite(Cu/AlN)electrodes is primarily mushroom-shape deformation、pits and adherence corrosion,and there is no alloying effect or new phases on the surface of the electrode.Nano-composite(Cu/AlN)electrodes for spot welding perform better than forged commercial(CuCrZr)electrodes because of the dispersion reinforcement of nano-AlN particles and its super thermal conductivity.
作者 邓景泉
机构地区 滁州学院
出处 《材料科学与工程学报》 CAS CSCD 北大核心 2010年第3期439-443,共5页 Journal of Materials Science and Engineering
关键词 点焊电极 失效机制 纳米复合材料(Cu/AlN) electrode for spot welding failure mechanism nano-composite(Cu/AlN)
  • 相关文献

参考文献11

  • 1Shinji Fukumotoa, Kana Fujiwarab, Shin Toji, Atsushi Yamamotoa. Small-scale resistance spot welding of austenitic stainless steels [J]. Materials Science and Engineering A, 2008, 492 (21) :243-249.
  • 2A. P. Gerlicha, T. Shibayanagi. Grain boundary sliding during friction stir spot welding of an aluminum alloy [J]. Scripta Materialia , 2009, 60(23):236-239.
  • 3Matsumoto J, Mochizuki H. Spot welding of aluminum alloy electrode life for various electrodes [J]. Welding international, 1994, 8(6): 438-445.
  • 4Wu Zhisheng, Shan Ping, Lian Jinrui, et al. Effect of deep cryogenic treatment on electrode life and microstructure for spot welding hot dip galvanized steel [J]. Materials and Design, 2003, 24(8): 687-692.
  • 5S. M. Darwish, A. A1-Samhan. Thermal stresses developed in weld bonded joints [J]. Journal of Materials Processing Technology, 2004, 153 154:971-977.
  • 6Takeshi Konno, Mikihiko Kobayashi, Mitsuru Egashira, Norio Shinya. Manipulation and welding of metal spheres above 10 mm using needle-like probe [J]. Science and Technology of Advanced Materials, 2005, 6: 529-534.
  • 7D. W. Lee, B. K. Kim. Nanostructured Cu Al2O3 composite produced by thermochemical process for electrode application [J]. Materials Letters, 2004, 58(3 4):378-883.
  • 8N. Hanser. The effect of grain size and strain on the tensile flow stress of Alat room temperature[J]. Acta. Metall. , 1977, 25 (1) :863--869.
  • 9S. Aslanlar. The effect of nucleus size on mechanical properties in electrical resistance spot welding of sheets used in automotive industry [J]. Materials and Design, 2006, 27:125--131.
  • 10S. Aslanlar, A. Ogur, U. Ozsarac, E. Ilhan. Welding time effect on mechanical properties of automotive sheets in electrical resistance spot welding [J]. Materials and Design, 2008, 29: 1427--1431.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部