期刊文献+

无源控制的超混沌Chen系统的自适应同步 被引量:2

Adaptive Synchronization of Hyperchaotic Chen Systems via Passive Control
下载PDF
导出
摘要 在不同初始条件下,提出一种基于无源控制理论的控制方法,实现具有参数不确定性的两超混沌Chen系统的自适应同步.通过引入自适应控制,在线估计系统的参数,并设计一个自适应无源控制器,使两系统的同步误差方程转化为无源系统.根据无源系统理论,系统的动态误差方程将稳定于状态空间原点,即两超混沌Chen系统完全同步.仿真结果表明,所设计的控制器简单明了,控制方法有效. Under different initial conditions,a control method based on passive control is proposed to achieve the adaptive synchronization of two hyperchaotic systems with uncertain parameters.The system parameters are estimated by introducing adaptive control,and an adaptive passive controller is designed to transfer the synchronization erroneous equation into a passive system.In terms of the passivity theory,the dynamic erroneous equation can be stable on the original point of the state space,namely,the two hyperchaotic systems can be completely synchronized.The simulation results have proven the simplicity and effectiveness of the designed controller.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2010年第4期378-382,共5页 Journal of Huaqiao University(Natural Science)
基金 福建省自然科学基金计划资助项目(E0710018)
关键词 超混沌Chen系统 同步 无源控制 自适应控制 hyperchaotic Chen system synchronization passive control adaptive control
  • 相关文献

参考文献10

  • 1PARK J H. Adaptive synchronization of hyperchaotic Chen system with uncertain parameters[J]. Chaos, Solitons Fractals, 2005,26 (3) : 959-964.
  • 2WANG Bo,WEN Guang-jurL On the synchronization of a class of chaotic systems based on backstepping method [J]. Physics Letters (A), 2007,370(1) : 35-39.
  • 3HUANG Li-lian, FENG Ru-peng, WANG Mao. Synchronization of uncertain chaotic systems with perturbation based on variable structure control[J]. Physics Letters (A), 2006,350(3/4):197-200.
  • 4CHEN H S. Global chaos synchronization of new chaotic systems via nonlinear control[J]. Chaos, Solitons & Fractals, 2005,23(4) : 1245-1251.
  • 5ZHANG Hao, MA Xi-kui. Synchronization of uncertain chaotic systems with parameters perturbation via active control[J]. Chaos, Solitons & Fractals, 2004,21 ( 1 ) : 39-47.
  • 6CHEN F X, ZHANG W D. LMI criteria for robust chaos synchronization of a class of chaotic systems[J]. Nonlinear Analysis. 2007 .67(12) : 3384-3393.
  • 7LIN W. Feedback stabilization of general nonlinear control systems: A passive system approach[J]. Systems & Control Letters, 1995,25(1) : 41-52.
  • 8YU Wen. Passive equivalence of chaos in Lorenz system[J]. IEEE Transactions on Circuits and Systems ( I ) : Fundamental Theory and Applications, 1999,46(7):876-878.
  • 9BYRNES C I, ISIDORI A, WILLEMS J C. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems[J]. IEEE Transactions on Automatic Control, 1991,36(11): 1228-1240.
  • 10LI Y X,TANG W K S,CHEN G R Generating hyperchaos via state feedback control[J]. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005,15 (10) : 3367-3375.

同被引文献22

  • 1李亚,禹思敏,戴青云,刘明华,刘庆.一种新的蔡氏电路设计方法与硬件实现[J].物理学报,2006,55(8):3938-3944. 被引量:32
  • 2WANG Zuo-lei.Anti-synchronization in two non-identical hyperchaotic systems with known or unknown parameters[J].Commun Nonlinear Sci Numer Simulat,2009,14(5):2366-2372.
  • 3LI Yu-xia,TANK W K S,CHEN Guan-rong.Generating hyperchaos via state feedback control[J].Int J BifurcatChaos,2005,15(10):3367-3375.
  • 4Lacroix JS, Buvelot JM, Polla BS, et al. Improvement of symptoms of non-allergic chronic rhinitis by local treatmen with capsaicin. Clin Exp Allergy 1991; 21:595
  • 5Lazzeri M, Beneforti P, Benaim G, et al. Intravesical capsaicin for treament severe bladder pain: a randomized placebo controlled study. J Nurology 1996; 156 (3):947
  • 6Peter H.Capsaicin cellulartargets:mechasnisms of action and celetivity for thin sensory neurons Parmacol Rev 1991;43(2):143
  • 7Stjarne P,Lundblad L, Anggard A,et al.Tachykinins and calcitonin gene-related pepetide:co-existence in sensory nerves of the nasal mucosa and effects on blood flow. Cell Tissue Rrs. 1989;256:439
  • 8ABDULLAH A. Synchronization and secure communication of uncertain chaotic systems based on full-order and re-duced-order output-afline observers[J]. Applied Mathematics and Computation,2013,219(19) .. 10000-10011.
  • 9WU Xiang-jun, WANG Hui, LU Hong-tao. Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication[J]. Nonlinear Analysis: Real World Applications, 2012,13(3) : 1441-1450.
  • 10PECORA L M,CARROLL T L. Synchronization in chaotic systems[J]. Physical Review Letters, 1990,64(8):821- 824.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部