期刊文献+

基于MEB-SVM的静态手势识别研究 被引量:2

Static gesture recognition research with MEB-SVM
下载PDF
导出
摘要 为了实现快速高准确率的静态手势识别,提出了一种新的支持向量机分类方法。图像分割是图像识别的基本步骤,采用彩色直方图为特征可以将手部区域从背景中分离出来;然后将得到的手部图像去除手部以外的区域,并二值化,得到手的轮廓;再用8邻域方法处理轮廓图,得到一个表示轮廓的坐标序列,再将复数序列采用傅里叶变换,从而得到一个大小、平移、旋转不变的一维矢量。最后对矢量用MBE-SVM进行分类、识别。通过这种方法完成的手势识别正确率达到了90%以上,基本实现了静态手势识别的目标。 Aiming at realizing high speed and high accuracy hand gesture recognition,a new support vector machine(abbreviated as SVM) classifier was proposed.Image segmentation is a first step of image recognition color-histogram method was applied to dig hand area from background;then binaries the hand image got from last step,and then,get the hand gesture's contour line;after that 8-connected neighborhood method was used to deal with the contour line to get a serial coordinates denote the main information of hand gesture,then use Fourier transform to get a suitable vector.Finally MEB-SVM was used to classify these vectors and get the meaning of hand gestures.The result indicates that the MEB-SVM method can get an accuracy of 90% in hand gesture recognition.And it can understand most hand gestures meaning.
作者 章丰明 任彧
出处 《机电工程》 CAS 2010年第6期120-123,共4页 Journal of Mechanical & Electrical Engineering
关键词 支持向量机 MBE-SVM 识别 分割 support vector machine MBE-SVM recognition segmentation
  • 相关文献

参考文献8

  • 1ATID S, WU H, ALISTAIR S. Hand gesture recognition for human computer interaction[ N]. ERCIM NEWS, European Research Consortium for Informatics and MAthematics,2001 (46).
  • 2吴江琴,高文,庞博,韩静萍.中国手语手势词识别的一种快速方法[J].高技术通讯,2001,11(6):23-27. 被引量:5
  • 3CERVANTES J, LI Xiao-ou, YU Wen, et al. Support vector machine classification for large data sets via minimum enclosing ball clustering [ J ]. Neurocomputing, 2008,71 ( 4 - 6) :611 -619.
  • 4CHENG Yi-zong. Mean shift, mode seeking and clustering [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995,17 ( 8 ) : 790 - 799.
  • 5CORTES C, VAPNIK V N. Support-vector networks [ J]. Machine Learning, 1995,20:273 - 297.
  • 6BOSER B, GUYON I, VAPNIK V N. A training algorithm or optimal margin classifiers [ C ]//Proc. Fifth Annual Workshop on Computational Learning Theory. New York: [ s. n. ] ,1992:144 - 152.
  • 7段洪伟,陈一民,林锋.基于LSSVM的静态手势识别[J].计算机工程与设计,2004,25(12):2352-2353. 被引量:5
  • 8TSANG I W, KWOK J T, CHEUNG P M. Core vector ma- chines: fast SVM training on very large data sets [ J ]. Journal of Machine Learning Research,2005,6:363 -392.

二级参考文献12

  • 1中国聋人协会.中国手语[M].北京:华夏出版社,1991..
  • 2马继勇.话者识别算法研究:[学位论文].哈尔滨:哈尔滨工业大学计算机系,1999..
  • 3马继勇,学位论文,1999年
  • 4中国聋人协会,中国手语,1991年
  • 5陶卿. 一种新的机器学习算法Support vector machines [Z]. 模式识别与人工智能, 2000.
  • 6Rabiner L R, JUANG Bing-hwang. Fundamentals of speech recognition[M]. Beijing:Tsinghua University Press,Prentice Hall, 1999.
  • 7Cherkassky V, Mulier F. Learning from data: Concepts, theory and methods[M]. NY: John Viley & Sons, 1997.
  • 8Kwok J. Moderating the outputs of support vector machine classifiers[J]. IEEE Transactions on Neural Networks, 1999,10(5):1018-1031.
  • 9Smith N, Gales M. Using SVMs to classify variable length speech patterns[R]. Technical Reprort CUED/F-INFENG/TR.412, Cambridge University, 2001.
  • 10Fine S, Navratil J, Gopinath R. A hybrid GMM/SVM approach to speaker identification[C]. USA:Preceedings, ICASSP, 2001.

共引文献7

同被引文献23

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部