期刊文献+

基于机器学习的蜂窝网络节点定位算法研究 被引量:1

Research of the Node Localization Algorithm Based on Machine Learning for Cellular Networks
下载PDF
导出
摘要 蜂窝网络希望能在广泛的应用领域内实现复杂的大范围监测和追踪任务,而移动台节点定位是相关应用的基础。本文在对现有无线网络定位技术研究的基础之上,有针对性地分析当前几种机器学习经典算法,提出了一种基于支持向量机树型多分类的蜂窝通信系统节点定位算法,充当分布式定位的全局坐标算法。通过对算法原理的分析以及实验结果对比,证明了基于机器学习的定位算法在定位效果方面解决了困扰基于信号参数的定位技术的边界问题与集中洞问题,在定位的平均误差、标准偏差和分布式定位正确率以及实现代价几个方面的总体性能均优于基于信号参数的定位技术与GPSone定位技术。 Cellular communication systems aim at achieving complex large-scale monitoring and tracing applications in wider fields, which is based on mobile station nodes localization. By studying the existing node localization technologies, this paper analyses the current several classical machine learning algorithms purposefully, and proposes a cellular communication system node localization algorithm based on machine learning, using it as a centralized coordinate algorithm of distributed node localization. Through simulation and theoretical analysis, it proves that the node localization algorithm in cellular communication systems based on machine learning can resolve the border problem and the coverage hole problem in the tra- ditional algorithms based on signal parameters, and its overall function is better than the traditional algorithms based on sig- nal parameters and GPS-one in terms of average error, standard deviation and the accuracy rate of distributed localization as well as the cost superior to the traditional location algorithm based on signal parameters.
出处 《计算机工程与科学》 CSCD 北大核心 2010年第8期56-59,共4页 Computer Engineering & Science
基金 2008年湖南省高等学校科学研究重点资助项目(08A064) 2009年湖南省科技计划资助项目(2009FJ3194)
关键词 蜂窝网络 节点定位 全局坐标算法 支持向量机 cellular communication system node localization centralized coordinate algorithm supportvector machine
  • 相关文献

参考文献7

二级参考文献55

共引文献91

同被引文献12

  • 1李建中.无线传感器网络专刊前言[J].软件学报,2007,18(5):1077-1079. 被引量:21
  • 2边肇祺,张学工.2008模式识别[M].2版.北京:清华大学出版社.
  • 3Di M, Joo M. A survey of machine learning in wireless netoworks from networking and application perspectives [C] //Proc of the 6th Int Conf on Information, Communications & Signal Processing. Piscataway, NJ: IEEE, 2007, 1-5.
  • 4Wang W, Huang T L, Liu H, et al. Localization algorithm based on SVM-data fusion in wireless sensor networks [-C] // Proc of the 3rd Int Conf on Genetic and Evolutionary Computing. Piscataway, NJ: IEEE, 2009: 447-450.
  • 5Liu H B, Xiong S W, Chen Q. Localization in wireless sensor network based on multi-class support vector machines [-C] //Proc of the 5th Int Conf on Wireless Communication Networking and Mobile Computing. Piscataway, NJ: IEEE, 2009 : 1-4.
  • 6Kim W, Park J, Kim H. Support vector learning approaches for object localization in acoustic wireless sensor network [C] //Proc of the 5th Int Conf on Intelligent Systems. Piscataway, NJ: IEEE, 2010:485-489.
  • 7邓乃扬,田英杰.SVM——理论、算法与拓展[M].北京:科学出版社,2009.
  • 8Vapnik V. The Nature of Statistical Learning Theory [M]. 2nd ed. Berlin: Springer, 2000.
  • 9Niculescu D, Nath B. DV based positioning in ad hoc networks [J]. Telecommunication Systems, 2003, 22(1/213/ 4) : 267-280.
  • 10Nagpal R, Shrobe H, Bachrach J. Organizing a global coordinate system from local information on an ad hoc sensor network [C] //Proc of the 2nd Int Workshop on Information Processing in Sensor Networks. Berlin: Springer, 2003: 333-348.

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部