期刊文献+

非负矩阵分解算法及其在生物信息学中的应用研究 被引量:6

Research on the Advances of Nonnegative Matrix Factorization and Its Application in Bioinformatics
下载PDF
导出
摘要 非负矩阵分解是近年来快速发展的一类机器学习算法,能够实现对高维数据的维度规约及局部特征提取,在诸多生物信息问题的分析与处理中得到了广泛应用,并衍生出一系列实用算法。本文系统分析了非负矩阵分解的数学理论基础及其特有的局部表达属性,综述了标准非负矩阵分解与各种衍生算法的发展历程及算法初始化与参数选取方法的研究进展,并从序列特征分析、表达模式与功能模块识别、生物医学文献挖掘等几个方面总结了非负矩阵分解算法在生物信息学领域的应用成果。最后,指出了非负矩阵分解算法研究及其应用于生物信息处理所面临的问题,分析和预测了可能的发展方向。 Nonnegative Matrix Factorization (NMF) is a rapidly developing parts-based machine learning algorithm, which can be used as a tool of dimensionality reduction and can identify the local features for high-dimensional data. NMF has a broad application in the analysis and interpretation of biological data, and a number of practical algorithms have been derived from it. This paper systematically analyzes the mathematical foundation of NMF and its advantages for the representation of local features, and surveys the advances of different varieties, initialization and parameter selection for the NMF algorithm. Also, its application in bioinformatics is reviewed and classified into several categories. Finally, the future directions of the NMF research and application are analyzed and predicted.
出处 《计算机工程与科学》 CSCD 北大核心 2010年第8期117-123,共7页 Computer Engineering & Science
基金 国家自然科学基金资助项目(60673018) 国家863计划资助项目(2007AA01Z106)
关键词 非负矩阵分解 生物信息学 局部特征 nonnegative matrix factorization bioinformatics local feature
  • 相关文献

参考文献61

  • 1Yeung M K, Tegner J, Collins J J. Reverse Engineering Gene Networks Using Singular Value Decomposition and Robust Regression[J]. Proceedings of the National Academy of Sciences, 2002,99(9) : 6163-6168.
  • 2Yeung K Y, Ruzzo W L. Principal Component Analysis for Clustering Gene Expression Data [J]. Bioinformatics, 2001, 17(9):763-774.
  • 3Liebermeister W, IAnear Modes of Gene Expression Determined by Independent Component Analysis[J]. Bioinformatics, 2002,18(1) : 51-60.
  • 4Liao J C, Boscolo R, Yang Y L, et al. Network Component Analysis: Reconstruction of Regulatory Signals in Biological Systems[J]. Proceedings of the National Academy of Sciences, 2003,100(26) : 15522-15527.
  • 5Lee D D,Seung H S. Learning the Parts of Objects by Nonnegative Matrix Factorization[J]. Nature, 1999,401 (6755) : 788-791.
  • 6Paatero P, Tapper U. Positive Matrix Factorization: A Nonnegative Factor Model with Optimal Utilization of Error Estimates of Data Values[J]. Environmetries, 1994,5 ( 2 ) : 111- 126.
  • 7Paatero P. I.east Squares Formulation of Robust Non-negative Factor Analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1997,37 ( 1 ) : 22-35.
  • 8Lee D D, Seung H S. Unsupervised Learning by Convex and Conic Coding[J]. Advances in Neural Information Processing Systems, 1997,1997(9) : 515-521.
  • 9Lee D D,Sebastian S H. Algorithms for Non-negative Matrix Factorization[J]. Advances in Neural Information Processing Systems, 2001,2001 (13):556-562.
  • 10Li S Z, Hou Xinwen, Zhang Hongjiang, et al. Learning Spatially Localized, Parts-Based Representation [C]//Proc of IEEE Conf on Computer Vision and Pattern Recognition, 2001 : 207-212.

同被引文献104

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部