期刊文献+

基于MVDR和ICA的语音识别方法研究

Speech Recognition Based on MVDR and ICA
下载PDF
导出
摘要 本文讨论了最小方差无失真响应建模方法,并与线性预测方法进行了比较,比较发现最小方差无失真响应滤波器能提供一个更好的原始语音包络。然后在研究ICA原理及FastICA快速算法的基础上,将MVDR参数提取方法与独立分量分析方法相结合,并与传统语音识别方法在有噪声和无噪声的情况下进行了比较,进而对识别率、计算时间等结果进行了分析。MVDR参数提取方法可以提高语音识别系统的识别率,但是会增加平均识别时间;而经过ICA特征变换后的语音识别系统具有较好的鲁棒性。 This paper discusses a modeling method of Minimum Variance Distortionless Response(MVDR), which compares with the linear predictive method. The result is that the Minimum Variance Distortionless Response filter can afford better original speech envelope. On the basis of studying ICA and FastlCA, the MVDR parameter picking-up method is combined with independent component analysis, which compares with the traditional speech recognition under the conditions with noise and without noise, and the data are analyzed. The MVDR parameter picking-up method can improve the distin- guishing rate of the speech recognition system, but increases the mean recognition time; and the speech recognition system with the ICA characteristic transform is more robust.
出处 《计算机工程与科学》 CSCD 北大核心 2010年第8期158-160,共3页 Computer Engineering & Science
基金 山东省教育厅资助项目(J08LJ52) 山东省信息产业厅资助项目(2005R00012)
关键词 语音识别 最小方差无失真响应 独立分量分析 speech recognition minimum variance distortionless response independent component analysis
  • 相关文献

参考文献8

  • 1杨竹青,李勇,胡德文.独立成分分析方法综述[J].自动化学报,2002,28(5):762-772. 被引量:148
  • 2马震,陈延萍.最小方差无失真响应浊音谱建模方法研究[J].应用声学,2008,27(4):326-332. 被引量:3
  • 3Sheraton P J.Lou K-N. On the, Family Of Spectral Estimatesfor Mixed Spectrum identification[J]. IEEE Trans On Signal Processing, 1991,39(3) 644-655.
  • 4Haykin S. Adaptive Filter Theory[M]. Englewood Cliffs; NJ: Prentice Hall,1991.
  • 5Marple Jr S L. Digital Spectral Analysis with Applications [M]. Englewood Cliffs, NJ: Prentice-Hall, 1987.
  • 6Lee Te-Won. Independent Component Analysis: Theory and Applications [M]. Boston: Kluwer Academic Publishers, 1998.
  • 7Hyvacrinen A Fast and Robust Fixed-Pbint Algorithms for Independent Component Analysis[J]. IEEE Trans on Neural Network, 1999,10(3) : 626-634.
  • 8Ciehoki A, et, al. Robust teaming Algorithm for Blind Separation of Sources [ J ]. Electronics Letters, 1994, 30 (17) 1386-1387.

二级参考文献9

  • 1孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993..
  • 2焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 3章照止 林须端.信息论与最优编码[M].上海:上海科学技术出版社,1993..
  • 4A. El-Jaroudi and J. Makhoul. Discrete all-pole modeling,. IEEE Trans. Signal Processing, Feb. 1991,vol. 39:411 - 423.
  • 5M. Oudot, O. Cappe, and E. Moulines. Robust estimation of the spectral envelope for harmonics + noise models. IEEE Workshop Speech Coding Telecommunications Proceedings, 1997.
  • 6P. J Sherman and K. -N. Lou. On the family of ML spectral estimates for mixed spectrum identification. IEEE Trans. Signal Processing, Mar. 1991 ,vol. 39:644 -655.
  • 7S. Haykin Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice Hall, 1991:273 - 285.
  • 8S. L. Marple, Jr. Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall, 1987:159- 172.
  • 9Sayed A. H. , Kailath T. A survey of spectral factorization methods. Numerical Linear Algebra with Applications,2001, 08 : 467 - 496.

共引文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部