摘要
提出了基于分析三维地震数据的粗糙集(RS)—神经网络(NN)技术,预测采区断层和煤层厚度变化。利用粗糙集对地震数据中所包含的大量干扰数据进行约简,生成低噪音数据;将约简后的数据输入神经网络进行训练获得断层识别和煤层厚度预测。实际数据验证表明,该方法具有较高的精度。
The thesis put forward a new method of Rough Sets(RS) and Neural Network(NN) technique to detect small faults and coal seam thickness by analyzing 3D seismic data.This method uses RS to reduce seismic data noise,and after reduction,low noise seismic data can be hold.After inputting those reduced data to NN,a predicting model which can detect small faults and predict coal seam thickness can be achieved after NN’s training.After this step,this model was used to detect small fault by 3D seismic data.We find that this method has high precision.
出处
《煤田地质与勘探》
CAS
CSCD
北大核心
2010年第3期66-68,72,共4页
Coal Geology & Exploration
基金
国家自然科学基金项目(40804026)
中国矿业大学青年科研基金项目(2009A054)
关键词
粗糙集
神经网络
断层预测
煤层厚度预测
rough sets
neural network
detecting small fault
predicting coal seam thickness