摘要
为提高金融业务数据集上的聚类质量和聚类效率,提出簇的直径、簇间的相似度这2个概念。利用距离尺度降维的中心距序降维法,将多维数据降至一维,在一维上利用自适应排序聚类算法ASC聚类。该算法和传统的Cobweb算法、K-means算法做对比,实验表明该方法能提高簇间相似度,最大提高200%。
Aiming to improve the clustering quality and efficiency on banking services datasets, this paper proposes the concepts of cluster diameter and the similarity measurement between clusters. It modifies multi-dimensional data to one dimension by dimension reduction based on distance order. It clusters the one dimension data with a self-Adaptive Sort Clustering(ASC) algorithm. This paper conducts extensive experiments to show that this algorithm can improve the cluster similarity and reduce the clustering time compared with Cobweb and K-means algorithms. The cluster similarity can be approximately improved by 200%.
出处
《计算机工程》
CAS
CSCD
北大核心
2010年第12期58-60,63,共4页
Computer Engineering
基金
国家自然科学基金资助项目(60773169)
贵州省科技厅自然科学基金资助项目(黔科合J字[2010])
遵义市科技局自然科学基金资助项目(遵市科合社字[2009]27号)
关键词
簇直径
簇间相似度
ASC算法
中心距序降维
cluster diameter
cluster similarity
self-Adaptive Sort Clustering(ASC) algorithm
dimension reduction by center distance order