期刊文献+

基于上下文的分布式协同过滤推荐技术 被引量:1

Context-based Distributed Collaborative Filtering Recommendation Technology
下载PDF
导出
摘要 针对传统协同过滤推荐技术应用于大规模动态数据集时难以兼顾准确度和效率的问题,提出一种基于上下文的分布式协同过滤推荐技术,引入推荐上下文的概念,并在此基础上充分考虑用户的即时兴趣以提高推荐的准确度,采用评分矩阵的分布式存储和计算以提高推荐的效率。实验结果表明,该分布式协同过滤技术能同时保证推荐的准确度和效率,使其在大规模动态数据集上的应用更具优势。 Aiming at the problems that the traditional Collaborative Filtering(CF) technology can hardly take both accuracy and efficiency into consideration when applied to large-scaled dynamic datasets, a context-based distributed collaborative filtering recommendation technology is proposed. The concept of recommend context is introduced and then based on that concept, it can enhance the recommend accuracy by taking users' immediate interest into account, and improve the algorithm's efficiency through the distributed store and computation of the rating matrix. Experimental results show that the context-based distributed collaborative filtering recommendation technology can guarantee both recommend accuracy and efficiency, and gains more advantages when it is applied to large-scaled dynamic data sets.
作者 吴奕 乐嘉锦
出处 《计算机工程》 CAS CSCD 北大核心 2010年第12期90-93,共4页 Computer Engineering
关键词 协同过滤 推荐系统 分布式系统 基于上下文的推荐 Collaborative Filtering(CF) recommendation system distributed system context-based recommendation
  • 相关文献

参考文献4

  • 1Sarwar B,Karypis G,Konstan J,et al.Item-based Collaborative Filtering Recommendation Algorithms[C] //Proc.of the 10th International Conference on World Wide Web.Hong Kong,China:[s.n.] ,2001.
  • 2Berkvosky S,Kuflik T,Ricci F.Distributed Collaborative Filtering with Domain Specialization[C] //Proc.of ACM Conf.on Recommender Systems.Minneapolis,Minnesota,USA:ACM Press,2007.
  • 3Das A,Datar M,Garg A.Google News Personalization:Scalable Online Collaborative Filtering[C] //Proc.of the 16th International Conference on World Wide Web.Banff,Alberta,Canada:[s.n.] ,2007.
  • 4邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:558

二级参考文献13

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997.
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167.

共引文献557

同被引文献3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部