期刊文献+

混沌系统的自适应函数投影同步与参数辨识 被引量:6

Adaptive Function Projective Synchronization and Parameter Identification for Chaotic Systems
下载PDF
导出
摘要 为了实现两未知参数混沌系统的同步控制与参数辨识,采用自适应函数投影同步控制策略,基于李亚普诺夫稳定性原理,设计了实现参数未知、不同初值的两同构或异构混沌系统同步的控制器和参数自适应控制律,给出了实现同步的控制参数的取值范围,分析了控制参数对同步系统性能的影响规律.以最新提出的单参数简化洛仑兹混沌系统模型为研究对象,采用Matlab/Simulink进行动态仿真研究,表明了理论分析的正确性和同步控制与参数辨识方法的有效性. To realize synchronization control and parameter identification of two chaotic systems with unknown parameters, controllers and parameters adaptive rules for two homogenous or heterogenous chaotic systems with unknown parameters and different initial values are designed based on Lyapunov stability principle by employing the adaptive function projective synchronization control strategy.The range of control parameters to achieve synchronization are presented,and the rule of control parameters affecting on performance of synchronizationsystem is analyzed.Taking the latest simplified Lorenz chaotic system with single parameter as an example,the dynamic simulation results on Matlab/Simulink show the correctness of theory analysis and the effectiveness of the parameter identification approach.
出处 《信息与控制》 CSCD 北大核心 2010年第3期326-331,341,共7页 Information and Control
关键词 混沌 函数投影同步 自适应控制 简化洛仑兹系统 chaos function projective synchronization adaptive control simplified Lorenz system
  • 相关文献

参考文献17

  • 1Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Physical Review Letters, 1990, 64(8): 821-824.
  • 2Mainieri R, Rehacek J. Projective synchronization in three- dimensional chaotic systems[J]. Physical Review Letters, 1999, 82(15): 3042-3045.
  • 3Xu D L, Li Z G. Controlled projective synchronization in nonpartially-linear chaotic systems[J]. International Journal of Bifurcation and Chaos, 2002, 12(6): 1395-1402.
  • 4刘杰,陈士华,陆君安.统一混沌系统的投影同步与控制[J].物理学报,2003,52(7):1595-1599. 被引量:53
  • 5Li G H. Projective synchronization of chaotic system using backstepping control[J]. Chaos, Solitons & Fractals, 2006, 29(2): 490-494.
  • 6Yan J P, Li C E Generalized projective synchronization of a unified chaotic system [J]. Chaos, Solitons & Fractals, 2005, 26(4): 1119-1124.
  • 7Li C P,. Yan J P. Generalized projective synchronization of chaos: The cascade synchronization approach[J]. Chaos, Solitons & Fractals, 2006, 30(1): 140-146.
  • 8Li G H. Generalized projective synchronization of two chaotic systems by using active control[J]. Chaos, Solitons & Fractals, 2006, 30(1): 77-82.
  • 9Li G H. Modified projective synchronization of chaotic system[J]. Chaos, Solitons & Fractals, 2007, 32 (5): 1786-1790.
  • 10唐新华,陆君安,张伟伟.基于反步法的混沌系统函数投影同步[J].动力学与控制学报,2007,5(3):216-219. 被引量:15

二级参考文献21

  • 1[1]Pecora L M,Carrol T L.Synchronization in chaotic systems.Phy Rev Lett,1990,64 (8):821 ~ 824
  • 2[3]Mainieri R,Rehacek J.Projective synchronization in three-dimensional chaotic systems.Phys Rev Lett,1999,82(15):3042 ~ 3045
  • 3[4]Xu Daolin,Li Zhigang.Controlled projective synchronization in nonpartially-linear chaotic systems.Int.J.Bifurcation and Chaos,2002,12 (6):1395 ~ 1402
  • 4[5]Guo-hui Li.Generalized projective synchronization of two chaotic systems by using active control.Chaos,Solitons and Fractals,2006,30:77 ~ 82
  • 5[8]Aimin Chen,Junan Lu,Jinhu Lü,Simin Yu.Generating hyperchaotic Lü attractor via state feedback control.Physica A,2006,364:103 ~ 110
  • 6Chen S H et al 2002 Acta Phys. Sin. 51 749(in Chinese).
  • 7Chen S H, Liu J, Feng J W, Lü J H 2002 Chin. Phys. Lett. 19 1257.
  • 8Mainieri R and Rehacek J 1999 Phys. Rev. Lett. 82 3042.
  • 9Li Z G and Xu D L 2001 Phys. Lett. A 282 175.
  • 10Xu D L 2001 Phys. Rev. E 63 27201.

共引文献64

同被引文献77

引证文献6

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部