期刊文献+

气相中Ir^+与CH_4分子自旋禁阻反应中C—H键活化机理的理论研究

Theoretical Study of the Mechanism for C—H Bond Activation in Spin-forbidden Reaction between Ir^+ and CH_4
下载PDF
导出
摘要 采用密度泛函理论和高级电子相关耦合簇方法,在CCSD(T)/6-311++G(3df,3pd)//B3LYP/6-311+G(d,p)的理论水平下,研究了3个自旋态势能面上自旋禁阻反应Ir+(5F)+CH4(1A1)→IrCH2+(3A″)+H2(1Σg+)的微观机理,通过自旋-轨道耦合的计算,讨论了势能面交叉和可能的自旋翻转过程.结果表明,Ir+与CH4的反应中不同势能面之间的"系间窜越"(ISC)将会发生,分子体系通过3次自旋翻转沿着热力学最有利的反应路径进行,最优的反应路径总放热量为44.64 kJ/mol.运用Harvey等的方法优化出最低能量交叉点(MECP),并计算了MECP处相应的自旋-轨道耦合常数(SOC),分别为346.95,2 545.62,2 990.98 cm-1,较大的SOC值说明了自旋翻转是有效的. The mechanism of the spin-forbidden reaction Ir^+(^5F)+CH4(^1A1)→IrCH2^+(3A″)+H2(1Σ^+g) on quintet,triplet and singlet potential energy surfaces(PESs) has been investigated at the CCSD(T)/6-311++G(3df,3pd)//B3LYP/6-311+G(d,p)levels.Crossing points between the different potential energy surfaces and the possible spin inversion process are discussed by spin-orbit coupling(SOC) calculations.The calculated results indicate that the intersystem crossing(ISC) between different potential energy surfaces will occur,the molecular system may change its spin mulitiplicity three times in this reaction,and preferentially move on the minimum-energy pathways.The overall exothermicity is 44.64 kJ/mol.The minimum energy crossing points(MECPs) that obtained by the mathematical algorithm proposed by Harvey et al.has been also employed.The values of the SOC constants at MECP1,MECP2 and MECP3 are 346.95 cm^-1,2 545.62 cm^-1 and 2 990.98 cm^-1,respectively,which indicates that the spin crossing process in this reaction can occur efficiently due to the large SOC involved.
出处 《宁夏大学学报(自然科学版)》 CAS 北大核心 2010年第2期155-161,共7页 Journal of Ningxia University(Natural Science Edition)
基金 国家自然科学基金资助项目(20873102)
关键词 Ir+ 密度泛函理论(DFT) 最低能量交叉点(MECP) 自旋-轨道耦合(SOC) Ir^+ density functional theory(DFT) minimum energy crossing point(MECP) spin-orbit coupling(SOC)
  • 相关文献

参考文献19

  • 1SHAYESTEH A, LAVROV V V, KOYANAGI G K, et al. Reactions of atomic cations with methane: gas phase room-temperature kinetics and periodicities in reactivity[J]. J Phys Chem: A, 2009, 113 (19) : 5602-5611.
  • 2LI Fengxia, ZHANG Xiaoguang, ARMENTROUT P B. The most reactive third-row transition metal: guided ion beam and theoretical studies of the activation of methane by Ir^+ [J]. Int J Mass Spectrom, 2006, 255/256 : 279-300.
  • 3PARKE L G, HINTON C S, ARMENTROUT P B. Experimental and theoretical studies of the activation of methane by Ta^+ [J]. J Phys ChemiC, 2007, 111 (48) : 17773-17787.
  • 4SANTO E D, MICHELINI M C, RUSSO N. Meth- ane C--H bond activation by gas-phase Th^+ and U^+ : reaction mechanisms and bonding analysis[J]. Organometallics, 2009, 28(13) ..3716-3726.
  • 5LI Jia, CHEN Xianyang, QIU Yixiang, et al. Spinflip reaction of Re ^+ CH4 a relativistic density functional theory investigation[J]. J Phys Chem: A, 2009, 113(30):8471-8477.
  • 6王丙星,朱井义,胡晓萍,郭玮,王艳秋.过渡金属离子Pt^+和甲烷气相反应机理的理论研究(英文)[J].原子与分子物理学报,2008,25(4):745-749. 被引量:2
  • 7SCHRODER D, SHAIK S, SCHWARZ H. Two-state reactivity as a new concept in organometallic chemistry[J]. Acc Chem Res, 2000, 33(3), 139-145.
  • 8PERRY J K, OHANESSIAN G, GODDARD W A. Mechanism and energetics for dehydrogenation of methane by gaseous iridium ions[J]. Organometallics, 1994, 13(5) :1870-1877.
  • 9IRIKURA K K, BEAUCHAMP J L. Electronic structure considerations for methane activation by third-row transition-metal ions[J]. J Phys Chem, 1991, 95(21): 8344-8351.
  • 10HARVEY J N, ASCHI M, SCHWARZ H, et al. The singlet and triplet states of phenyl cation;a hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces[J]. Theor Chem Acc, 1998, 99:95-99.

二级参考文献17

  • 1Allison J, Freas R B, Ridge D P. Cleavage of alkanes by transition-metal ions in the gas-phase[J]. J. Am. Chem. Soc., 1979, 101:1332.
  • 2Irikura K K, Be.auchamp J L. Methane oligomerlzation in the gas-phase by 3rd-row transition-metal ions[J ]. J. Am. Chem. Soc., 1991, 113:2769.
  • 3Sievers M R, Chen Y M, Haynes C L, et al. Activation of CH4, C2H6, and C3H8 by gas-phase Nb^+ and the therrncchemistry of Nb-ligand complexes [J ]. Int. J. Mass Spectrom., 2000, 196 : 149.
  • 4Armentrout P B. Activation of CH4 by gas-phase Mo^+ , and the thermochemistry of Mo-ligand complexes[J]. J. Phys. Chem. A, 2006, 110:8327.
  • 5Armentrout M M, Li F X, Armentrout P B. Is spin conserved in heavy metal systems? Experimental and theoretical studies of the reaction of Re^+ with methane [J], J. Phys. Chem. A, 2004, 108:9660.
  • 6Zhang X G, Liyanage R, Armentrout P B. Potential energy surface for activation of methane by Pt^+ : a combined guided ion beam and DFT study[ J ]. J, Am. Chem, Soc,, 2001, 123:5563.
  • 7Liu F, Zhang X G, Armentrout P B. Activation of CH4 by gas-phase Ni^+ and the thermochemistry of Ni-ligand complexes[J]. Phys. Chem. Chem. Phys. , 2005, 7: 1054.
  • 8Armentrout P B, Sievers M R. Activation of CH4 by gas-phase Zr^+ and the thermochemistry of Zr-ligand complexes[J]. J. Phys, Chem, A, 2003, 107:4396.
  • 9Kummerlowe G, Balteanu I, Sun Z, et al. Activation of methane and methane-d(4)by ionic platinum clusters [J]. Int. J. Mass Spectrom. , 2006, 254:183.
  • 10Pavlov M, Blomberg M R A, Siegbahn P E M, etal.Pt^+ -catalyzed oxidation of methane: theory and exper- iment[J]. J. Phys. Chem. A, 1997, 101:1567.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部