期刊文献+

基于多类SVM与改进EMD的故障诊断 被引量:5

Fault Diagnosis Based on Multi-class Support Vector Machine and Improved Empirical Mode Decomposition
下载PDF
导出
摘要 鉴于传统方法在智能故障诊断中存在着一些不足,提出了一种基于多类支持向量机(SVM)和改进的经验模式分解(EMD)的故障检测与诊断办法。首先通过采用窗口平均法的EMD将原始信号自适应分解到分布在不同频带的基本模式分量(IMF),再用特征归一化处理进行特征提取,然后输入多类SVM分类器进行分类,从而对设备的当前状况作出判断。经过实验证明,本方法可以有效地对轴承设备进行故障诊断。 Aiming at the disadvantage of classic neural networks,a new fault diagnosis method is proposed based on multi-class support vector machine(SVM) and improved empirical mode decomposition(EMD).Firstly,vibration signals are adaptively decomposed into several intrinsic mode functions(IMF) from original signals by EMD using window average.Then those functions,which belong to different frequency bands,are regarded as the input characteristic vectors of SVM for fault classification after dealing with the feature normalization Lastly,information is acquired for judging the status of devices.This method proved to be valid in a bearings fault diagnosis examples.
作者 饶俊 王太勇
出处 《组合机床与自动化加工技术》 北大核心 2010年第6期29-31,36,共4页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家"863"高技术研究发展计划资助项目(2006AA04Z146 2007AA042005) 高等学校博士学科点专项科研基金资助项目(20060056016)
关键词 支持向量机 故障诊断 经验模式分解 特征提取 support vector machine fault diagnosis empirical mode decomposition feature extraction
  • 相关文献

参考文献4

二级参考文献26

  • 1胥永刚,何正嘉,王太勇.基于经验模式分解的包络解调技术及其应用[J].西安交通大学学报,2004,38(11):1169-1172. 被引量:6
  • 2杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88. 被引量:146
  • 3邓乃杨 田英杰.数据挖掘中的新方法-支持向量机[M].北京:科学出版社,2004..
  • 4Weston J, Watkins C. Multi-class support vector machines. Royal Holloway College, Tech Rep : SCD-TR-98-04,1998.
  • 5Kressel U. Pairwise Classification and support vector machines. Advances in Kernel Methods-Support Vector Learning, MIT Press, Cambridge, Massachusetts, chapter1 5,1999.
  • 6Inoue T,Abe S. Fuzzy Support Vector Machines for Pattern Classification. IJCNN'01,2001:1449 - 1454.
  • 7Fumitake Takahashi,Shigeo Abe. Decision Tree-based Multiclass Support Vector Machines. Proceedings of the 9th International Conferenceon Neural Information Processing,2002,2 : 1418 - 1422.
  • 8Jin Huang,Jingjing Lu,Charles X Ling. Comparing Naive Bayes, Decision Tree,and SVM with AUC and Accuracy [ C ]//Proceedings of the 3^rd IEEE international Conference on Data Ming,2003.
  • 9SIMONH.神经网络原理[M].北京:机械工业出版社,2004.183-185.
  • 10Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis[J].Proc R Soc Lond(A),1998,454(1):903-995

共引文献100

同被引文献44

引证文献5

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部