摘要
设D=(V(D),A(D))是一个强连通有向图.弧集S(?)A(D)称为D的k-限制性弧割,如果D-S中至少有两个强连通分支的阶数大于等于k.最小k-限制性弧割的基数称为k-限制性弧连通度,记作λ_k(D).k-限制性点连通度κ_k(D)可以类似地定义.有k-限制性弧割(k-限制性点割)的有向图称为λ_k-连通(κ_k-连通)有向图.本文研究有向图D的限制性弧连通度和其线图L(D)的限制性点连通度的关系,证明了对任意λ_k-连通有向图D,κ_k(L(D))≤λ_k(D),当k=2,3时等式成立;若L(D)是κ_(k(k-1))-连通的,则λ_k(D)≤κ_(k(k-1))(L(D));特别地,若D是一个定向图且L(D)是κ_(k(k-1)/2)-连通的,则λ_k(D)≤κ_(k(k-1)/2)(L(D)).
For a strongly connected digraph D = (V(D), A(D)), an arc-cut S A(D) is a k-restricted arc-cut of D if O - S has at least two strong components of order at least k. The k-restricted arc-connectivity λk (D) is the minimum cardinaiity of all k-restricted arc-cuts. The concept of k-restricted vertex-connectivity kk (D) can be defined similarly. A digraph which contains k-restricted arc-cut (resp. k-restricted vertex-cut) is called λk-connected (resp. kk-connected). In this paper, we study the relationship between the restricted arc-connectivity of digraph D and the restricted vertex-connectivity of its line digraph L(D). We prove that for any λk-connected digraph D, kk(L(D)) ≤λk(D), equality holds when k = 2, 3; for any digraph D with L(D) being kk(k-1)-connected, λk(D) ≤kk(k-1)(L(D)); if D is an oriented graph such that L(D) is kk(k-1)/2-connected, then λk(D) ≤ nk(k-1)/2(L(D)).
出处
《数学研究》
CSCD
2010年第2期107-113,共7页
Journal of Mathematical Study
基金
supported by NSFC(10971255)
the Key Project of Chinese Ministry of Education(208161)
Program for New Century Excellent Talents in University
The Project-sponsored by SRF for ROCS,SEM
关键词
有向线图
限制性连通度
Line digraph
Restricted connectivity