期刊文献+

基于消息传播的Bayesian推理算法研究 被引量:2

Researching on Message-based Transmission Bayesian Inference Algorithm
下载PDF
导出
摘要 利用网络结构特性和条件独立性之间的关系设计推理有效方法,是Bayesian网络推理的主要研究内容.各种推理算法的区别主要在于计算速度.在深入讨论已有算法的基础上,设计并实现了基于消息传播的Bayesian推理算法,有效地降低了推理过程中运算的时空复杂度. It is the main research content of Bayesian network to design effective way of reasoning using structural characteristics and independence conditions.The major difference between the various inference algorithms is the calculation speed.In this paper,on discussing in depth the existing algorithms we designed and realized a messagebased transmission Bayesian inference algorithm,which reduced the reasoning process by time and space complexity.
作者 赵越
出处 《吉林建筑工程学院学报》 CAS 2010年第3期61-63,共3页 Journal of Jilin Architectural and Civil Engineering
基金 吉林建筑工程学院青年科技发展基金项目(J20091058)
关键词 BAYESIAN网络 消息传播 推理算法 Bayesian networks message-based transmission reasoning algorithms
  • 相关文献

参考文献4

二级参考文献37

  • 11.Chickering D. Learning equivalence classes of Bayesian networks structures. In: Horvitz E, Jensen F ed. Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1996. 54~61
  • 22.Geriger D, Hekerman D. A charactererization of the Dirichlet distribution with application to learning Bayesian networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1995. 196~207
  • 33.Heckman D. A Bayesian approach for learning causal networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1995. 285~295
  • 44.Heckman D, Geiger D, Chickering D. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 1995,20(3):197~243
  • 55.Heckman D, Shachter R. Decision-Theoretic foundations for causal reasoning. Journal of Artificial Intelligence Research, 1995,3:405~430
  • 66.Heckman D, Mandani A, Wellman M. Real-World applications of Bayesian networks. Communications of the ACM, 1995,38(3):38~45
  • 77.Buntine W. Theory refinement on Bayesian networks. In: Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence. Los Angeles, CA: Morgan Kaufmann Publishers, Inc., 1991. 52~61
  • 88.Cooper G, Herskovits E. A Bayesian method for the introduction of probabilistic networks from data. Machine Learning, 1992,9(4):309~347
  • 99.Russell S, Binder J, Koller D et al. Local learning in probabilistic networks with hidden variables. In: Cooper G F, Moral S ed. Proceedings of the 14th International Joint Conference on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1998. 1146~1152
  • 101999-03-15

共引文献140

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部