期刊文献+

变分迭代法在双曲型偏微分方程中的应用

Application of Variational Iterative Method in Hyperbolic Partial Differential Equation
下载PDF
导出
摘要 本文讨论了如何将变分迭代法应用于双曲型偏微分方程,并且通过其简便的计算可以得到方程的解,得出变分迭代法是一种既简单又有效的方法。 This paper discusses the application of variational iterative method in hyperbolic partial differential equation.We obtain the solution of the equation through simple calculation,and find that the vatiational iterative method is very simple and effective.
作者 张钟德
出处 《长春师范学院学报(自然科学版)》 2010年第3期6-8,共3页 Journal of Changchun Teachers College
关键词 变分迭代法 双曲型偏微分方程 收敛解 vatiational iterative method hyperbolic partial differential equation convergent solution
  • 相关文献

参考文献12

  • 1M. A. A. bdou, A. A. Soliman. Variational iteration method for solving Burgers' and coupled Burgers'equation[ J ]. J. Comput. Appl. Math. 2005,181:245 - 251.
  • 2E. M. Abulwafa, M. A. Abdou, A. A. Mahmoud. The solution of nonlinear coagulation problem with mass loss [ J ]. Chaos, Solition&Fractals, 2006,29: 313 - 330.
  • 3G. Adomian. A review of the decomposition method in applied mathematics [ J ]. J. Math. Anal. Appl, 1988,135: 501 - 544.
  • 4G. Adomian. Solving Frontier Problems of Physics: The Decomposition Method[ M]. Boston: Kluwer Academic Publishers, 1994.
  • 5J. H. He, A new approach to nonlinear partial differential equations, Comm. Non- linear SciNumer[ J]. Simul. 1997,2(4) :203 -205.
  • 6J. H. He. Approximate analytical solution for seepage flow with fractional derivatives in porous media[J]. Comput. Methods. Appl. Mech. Eng. 1998,167:57 - 68.
  • 7J. H. He. A variational 1iteration approach to nonlinear problems and its applications[ J]. Mech. Appl. 1998,20( 1 ) : 30 - 31.
  • 8J. H. He. Variational iteration method - a kind of nonlinear analytical technique: someExamples[ J]. Internat. J. Nonlinear. Mech, 1999, 34: 708 - 799.
  • 9J. H. He. Variational iteration method for autonomous ordinary differential systems[ J]. Appl. Math. Comput. 2000,114(2/3) : 115 - 123.
  • 10J. H. He. Homotopy perturbation method: a new nonlinear technique[ J]. Appl. Math. Comput. 2003,135 : 73 - 79.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部