摘要
The optimization of boards by grades plays an important role in the production for cross cutting boards, and the outturn rate and utilization of boards are directly affected by the optimization results of boards by grades. At present, the OptiCut series fully automatic optimizing cross-cut saw(FAOCCS) from Germany Weinig Group occupies the main markets in the world, but no report about the relative theories on the optimization technology and its algorithms is available. There exist some disadvantages in woodworking machinery and equipment used for cross cutting boards in China, for example, low sawing precision, outturn rate of boards and productivity, and difficulty in making statistics on the sawing results. Three optimization modes are presented for the optimization algorithms for FAOCCS, namely, optimization of fixed length, optimization of finger-jointed lumber and mixed optimization. Mathematical models are then established for these three optimization modes, and the corresponding software for realizing the optimization is prepared. Finally, Synthetic evaluation on the established mathematical models is presented through three practical examples. The results of synthetic evaluation indicate that FAOCCS using the optimization modes may raise the outturn rate of boards approximately 8% and the productivity obviously, and allows accurate statistics on the cross cut products of boards. The mathematical models of above three optimization modes are useful for increasing the outturn rate and utilization ratio of boards.
The optimization of boards by grades plays an important role in the production for cross cutting boards, and the outturn rate and utilization of boards are directly affected by the optimization results of boards by grades. At present, the OptiCut series fully automatic optimizing cross-cut saw(FAOCCS) from Germany Weinig Group occupies the main markets in the world, but no report about the relative theories on the optimization technology and its algorithms is available. There exist some disadvantages in woodworking machinery and equipment used for cross cutting boards in China, for example, low sawing precision, outturn rate of boards and productivity, and difficulty in making statistics on the sawing results. Three optimization modes are presented for the optimization algorithms for FAOCCS, namely, optimization of fixed length, optimization of finger-jointed lumber and mixed optimization. Mathematical models are then established for these three optimization modes, and the corresponding software for realizing the optimization is prepared. Finally, Synthetic evaluation on the established mathematical models is presented through three practical examples. The results of synthetic evaluation indicate that FAOCCS using the optimization modes may raise the outturn rate of boards approximately 8% and the productivity obviously, and allows accurate statistics on the cross cut products of boards. The mathematical models of above three optimization modes are useful for increasing the outturn rate and utilization ratio of boards.
基金
supported by Beijing Municipal Key Discipline Construction Project for Mechanical Design and Theory of China