期刊文献+

三维双调和方程的高阶紧致差分格式及其多重网格方法 被引量:3

High-order compact difference format of three-dimensional double-harmonic equation and its solution with multi-grid approach
下载PDF
导出
摘要 提出一类求解三维双调和方程的高精度紧致差分格式.该类格式是以泊松方程的高精度格式为基础的四阶精度19点紧致差分格式和六阶精度27点紧致差分格式.采用多重网格方法求解由高精度紧致差分格式所形成的代数方程组,并与低精度方法进行比较.讨论多重网格方法中不同松驰算子的迭代收敛效果.数值实验结果验证四阶紧致差分格式和六阶紧致差分格式的精度以及多重网格方法的可靠性和高效性. Based on high-accuracy compact difference format,the solution of three-dimensional double-harmonic equation with a class of high-order compact difference formats was proposed.Two kinds of formats were those with fourth-order difference approximation on 19 points and sixth-order difference approximation on 27 points,which were based on the high-accuracy format of the Poisson equation.The multigrid method was used to solve a set of algebraic equations formed with the high-accuracy compact difference format and the computing result was compared with that computed with low-accuracy method.The iterative convergence effect of different relaxation operators in the multigrid method was aslo discussed.Numerical simulation was carried out to verify the accuracy of the fourth-order and sixth-order compact formats as well as the stability and efficiency of the multigrid method.
出处 《兰州理工大学学报》 CAS 北大核心 2010年第3期142-147,共6页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(10502026,10662066)
关键词 三维双调和方程 高精度 紧致差分格式 多重网格方法 three-dimensional double-harmonic equation high accuracy compact difference format multigrid method
  • 相关文献

参考文献11

  • 1徐芝纶.弹性力学[M].2版.北京:高等教育出版社,1984.
  • 2YOUSIF W S, EVANS D J. Explicit block iterative rnethood for the solution of the biharmonic equation [J]. Numer Methods Partial Differential equation, 1993,9: 1-12.
  • 3ALTAS I,DYM J,GUPTA M M,et al. Multigrid solution of automatically generated high-order diseretization for the biharmonie equation [J]. SIAM J Sci Star Comput, 1998,19: 1575-1585.
  • 4EHRLIN L M. Solving the Biharmonic equation as a coupled finite difference equation [J]. SIAM J Numer Anal, 1971,8: 278-287.
  • 5BIRKHOFF G, LYNCH R E. Numerical solution of elliptic problems [M]. Philadelphia: SIAM, 1984.
  • 6MANOHAR R, STEPHENSON J W. Optimal finite analytic methods [J]. J Heat Transfer, 1982,104 : 432-437.
  • 7田振夫.一类双调和方程的高精度差分方法[J].齐齐哈尔师范学院学报(自然科学版),1996,16(3):11-13. 被引量:1
  • 8ZHANG J. Multigrid method and fourth-order compact scheme for 2D Poisson equation with unequal mesh-size discretization [J]. J ComputPhys, 2002,179 : 170-179.
  • 9葛永斌,吴文权,卢曦.基于二维泊松方程六阶紧致格式的多重网格方法[J].上海理工大学学报,2002,24(4):337-340. 被引量:8
  • 10ALTAS I, ERHEL J, Gupta M M. High accuracy solution of three-dimensional biharrnonic equations [J]. Numerical Algorithms, 2002,29:1-19.

二级参考文献12

  • 1田振夫.求解泊松方程的紧致高阶差分方法[J].西北大学学报(自然科学版),1996,26(2):109-114. 被引量:11
  • 2哈克布思W.多重网格方法[M].北京:科学出版社,1988..
  • 3Bickly W C. Finite difference formula for the square lattice[J]. Quart J Meth Appl Math, 1948, 1: 35~42.
  • 4Manohar R, Stephenson J W. Optimal finite analytic methods[J]. J Heat Transter, 1982, 104: 432~437.
  • 5Birkoff G, Lynch R E. Numerical Solution of Elliptic Problems[M]. Philadelphia: SIAM, 1984, 87~89.
  • 6Manohar R, Stephenson J W. High order difference schemes for linear partial differential equation[J]. SIAM J Sci Stat Comput, 1984, 5(1): 69~77.
  • 7Zhang Jun. A cost-effective multigrid projection operator[J]. J Comput Appl Math, 1996, 76: 325~333.
  • 8Zeeuw P M. Matrix-dependent prolongations and restrictions in a blackbox multigrid solver[J]. J Com-put Appl Math, 1990, 33: 1~13.
  • 9Gupta M M, Kouatchou J, Jun Zhang. Comparison of second and four-order discretizations for multigrid Poisson solvers[J]. J Comput Phys, 1997, 132: 226~232.
  • 10Brandt A. Multi-level adaptive solution to boundary -value problems[J]. Math Comput, 1977, 31: 333~390.

共引文献7

同被引文献51

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部