摘要
对于任意给定的正整数r1≥2,r2≥4,r1≤r2,当n→∞时,完全二部单路图G(n,r1,r2)的谱半径ρ(G(n,r1,r2))有极限,即limρn→∞(G(n,r1,r2))=ρ,并确定了极限ρ,即limρn→∞(G(n,r1,r2))=(r2((2+r2r1-2r1)+r2(2+r2r1-2r1)2+4(r2-1)(r1-1)2)^(1/2)/2(r2-1))^(1/2)
For any given integer r1 ≥ 2,r2 ≥ 4,r1 ≤ r2,ρ ( G ( n ,r1 ,r2 )) the spectral radius of G ( n ,r1 ,r2 )has limit ρ as n tends to infinite i.e.,limn→∞ρ( G ( n,r1 ,r2 ))= ρ. we determine the limit
limn→∞ρ(G(n,r1,r2))=√r2(2+r2r1-2r1)+r2√(2+r2r1-2r1)^2+4(r2-1)(r1-1)^2/2(r2-1)
出处
《湖南文理学院学报(自然科学版)》
CAS
2010年第2期14-17,共4页
Journal of Hunan University of Arts and Science(Science and Technology)
关键词
完全二部单路图
谱半径
极限
Complete bipartite single path-graphs G ( n
r1
r2 )
Spectral radius
The limit