摘要
利用紧Hausdorf空间X中闭无处稠子集与连续函数空间C(X)中单调网之间的对应关系,得到正规测度的一个特征:定理设X是紧Hausdorf空间,则0≤μ∈M(X)是正规的当且仅当对X中的每一闭无处稠子集G。
By applying the corresponding relation of the monotonic nets of the continuous function space C(X) on a compact Hausdorff space X and the closed nowhere dense subsets of X, it was obtained in this note a characterization of normal measures.Theorem Let X be a compact Hausdorff space , a regular measure μ∈ M(X) is normal if and only if for each closed nowhere dense set G in X , [(-μ)∨μ]( G )=0
出处
《华南农业大学学报》
CAS
CSCD
北大核心
1999年第1期118-120,共3页
Journal of South China Agricultural University