期刊文献+

信息检索中的两个数据融合方法比较 被引量:1

Comparison of two data fusion methods for information retrieval
下载PDF
导出
摘要 讨论一种常见的集成方法——距离平方和最小准则,指出该准则下由线性加权原理所得融合结果的优良性以及信息检索文献中的一个错误。然后通过分析基于距离之和最小准则所得融合结果的检索性能,发现由基于距离之和最小准则得到的融合结果距离原始检索结果最近。最后,通过实例验证了该方法的结果。 Data fusion technology was initiated in the field of information retrieval around the 1990s. By using different strategies in a variety of ways to study the retrieval fusion, it can be found that the integration strategy can greatly improve the efficiency of information retrieval. In this paper, the authors focused on a common search strategy, the minimum distance square sum principle, and pointed out the optimality of the results under the linear integration principle and a mistake in information retrieval literatures. Then they analyzed the performance of fusion results based on the minimum distance stun. It is concluded that the fusion results weighted by the minimum distance sum are most approximate to the original retrieval results. Finally, the conclusion was demonstrated by some experiments.
作者 赵兹 马江洪
机构地区 长安大学理学院
出处 《计算机应用》 CSCD 北大核心 2010年第A01期54-56,68,共4页 journal of Computer Applications
基金 国家973计划项目(2007CB311002)
关键词 数据融合 线性加权 误差平方和 误差和 距离和 data fusion linear weighting square error sum error sum distance sum
  • 相关文献

参考文献7

二级参考文献26

  • 1汪祖媛,庄镇泉,王煦法.逐维聚类的相似度索引算法[J].计算机研究与发展,2004,41(6):1003-1009. 被引量:5
  • 2费业泰.误差理论与效据处理[M].机械工业出版社,2005:81.
  • 3盂宪尧.数据融合技术与船舶自动化[M].大连海事大学出版社,2003:2-10.
  • 4郭德伟,钟艳如,黄美发.应用ObjectARX实现AutoCAD中表面粗糙度的标注[J].桂林电子科技大学学报,2007,27(4):282-286. 被引量:1
  • 5Gouvea F. p-adic numbers. Berlin:Universitext. Springer-Verlag, 1997
  • 6国家质量技术监督局.测量不确定度评定与表示指南[M].北京:中国计量出版社,2000.
  • 7Yannis Sismanis. Nick Roussopoulos. The dwarf data cube eliminates the high dimensionality eurse[R]. TR-CS4552. University of Maryland, 2003.
  • 8Pitor Indyk. Rajeev Motvani. Approximate nearest neighbo::s: Toward removing the curse of dimensionality[C].In ACM Symposium on Theory of Computing. 1998.
  • 9Bellmann R. Adaptive Control Processes: A Guided Tour[M]. Princeton University Press. 1961.
  • 10Jerome H Friedman. Flexible metric nearest neighbor classification [R]. Technical Report, Department of Statistics, Stanford University, 1994.

共引文献30

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部