期刊文献+

一类二阶具复杂偏差变元的微分方程周期解 被引量:1

Periodic solutions of the second order differential equations with complex deviating argument
下载PDF
导出
摘要 通过Mawhin连续性定理和周期泛函的强不等式,研究了一类二阶具复杂偏差变元的时滞微分方程x″(t)+f(t,x(t),x′(t-τ0(t)))x′(t)+g(t,x(x(t-τ(t))))=q(t)的周期解问题,得到了关于此类方程的周期解存在性准则. By the Mawhin's continuation theorem and a sharp inequality, the paper studied a kind of the second order differential equations with complex deviating argument x"(t)+f(t,x(t),z'(t-τ0(t)))x'(t)+g(t,x(x(t-τ(t))))=q(t), and the new existence criteria was obtained.
作者 陈月红
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期196-199,203,共5页 Journal of Central China Normal University:Natural Sciences
基金 广东省自然科学基金项目(9151008002000012) 广东技术师范学院青年项目(09kj901)
关键词 复杂偏差变元 强不等式 周期解 重合度 complex deviating argument sharp inequality periodic solution theory of coincidence degree
  • 相关文献

参考文献8

二级参考文献25

  • 1刘锡平,贾梅.一类二阶迭代微分方程的周期解[J].应用数学学报,2004,27(3):481-488. 被引量:11
  • 2黄先开.具有时滞的保守系统的2π周期解[J].系统科学与数学,1989,9(4):298-308. 被引量:17
  • 3刘锡平.一类偏差变元依赖状态自身的泛函微分方程[J].北京理工大学学报,1996,16(6):576-580. 被引量:8
  • 4丁同仁,中国科学.A,1982年,1期,1页
  • 5Leela S., Monotone method for second order periodic boundary value problems, Nonlinear Anal., 1983, 7:349-355.
  • 6Nieto J. J., Nonlinear second-order peroidic boundary value problems, J. Math, Anal. Appl., 1988, 130:22-29.
  • 7Cabada A., Nieto J. J., A generation of the monotone iterative technique for nonlinear second-order periodicboundary value problems, J. Math. Anal. Appl., 1990, 151: 181-189.
  • 8Cabada A., The method of lower and upper solutions for second, third, forth, and higher order boundaryvalue problens, J. Math. Anal. Appl., 1994, 185: 302-320.
  • 9Gossez J. P., Pmari P., Periodic solutions of a second order ordinary differential equation: anecesary andsufficient condition for nonresonance, J. Diff. Equs., 1991, 94: 67-82.
  • 10Omari P., Villari G., Zandin F., Periodic solutions of lienard equation with one-sided growth restrictions, J.Diff. Equs., 1987, 67: 278-293.

共引文献162

同被引文献8

  • 1黄先开,向子贵.具有时滞的Duffing型方程+g(x(t—τ))=p(t)的2π周期解[J].科学通报,1994,39(3):201-203. 被引量:90
  • 2章春林,鲁世平.一类具有复杂偏差变元的Liénard方程周期解[J].安徽师范大学学报(自然科学版),2006,29(4):315-319. 被引量:2
  • 3Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations [M] . Lecture Notes in Mathematics, 1977.
  • 4Wang Gen-qiang. A priori bounds for periodic solutions of a delay Rayleigh equation [J] . Appl Math Lett, 1999 (12) : 41-44.
  • 5Shiping Lu, Weigao Ge. Periodic solutions for a kind of Lienard equation with a deviating argument [J] . Journal of Mathematical Analysis and Applications, 2004 (289) : 231-243.
  • 6Chen Yue-hong, Wang Gerrqiang. Periodic Solutions of Nonautonomous Delay Duffing Equations With A Complex Devitating Argument [J] . Far East J Appl Math, 2007, 26 (2): 159-170.
  • 7Li J W, Wang G Q. Sharp Inequalities for Periodic Functions [J] .Applied Mathematics E-Notes, 2005 (5) : 75-83.
  • 8Wang Zheng-xin, Qian Long-xia, Lu Shi-ping, et al. The existence and uniqueness of periodic solutions for a kind of Duffing-typeequation with two deviating arguments [J] . Nonlinear Analysis, 2010, 73: 3034-3043.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部