期刊文献+

具有马尔可夫时变时延的REM拥塞算法局部稳定性 被引量:1

Local stability of REM algorithm with Markovian time-varying delays
原文传递
导出
摘要 针对在REM拥塞算法局部稳定性的相关研究中,把Internet网络中数据传输时延简单地描述为有界随机时延的缺陷,采用定常时延dm和服从马尔可夫跳变规律的有界时变时延d(t)之和来准确描述网络传输时延变化规律,得出了一些REM拥塞控制算法在平衡点局部稳定的进一步结果,并采用Matlab中的线性矩阵不等式形式给出了常时延相关随机稳定条件.相对于有界随机时延描述,该描述具有较强的针对性,更能充分体现REM拥塞算法局部稳定性特征,所得到的随机稳定条件为REM算法选择确保系统稳定的参数提供了一种较好方式. Because time-varying delay of Internet is simply described as a bounded stochastic time-varying delay in several researches of the stability of REM (random early marking) algorithm, a new method was adopted to describe time-varying delay in Internet that time-varying delay of Internet is composed of constant delay part named and bounded time-varying partgoverned by Markov chains. Some further results of the local stability in equilibrium for REM Internet congestion control algorithm are proposed and thus a constant delay dependent stochastic stability condition which can be solved by LMI (linear matrix inequality) tools in Matlab is also given. Compared the assumption of bounded stochastic time-varying delay, our assumption is more accurate and make properties of REM algorithm become clearly. This stochastic stability condition provides a better method for selecting the parameters in REM algorithm that ensure stability.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第6期19-22,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60603006) 国家大学生创新性实验计划资助项目(091067426)
关键词 网络拥塞控制算法 马尔可夫链 线性矩阵不等式 局部随机稳定 随机指数标记算法 Internet congestion control algorithm Markov chains linear matrixinequality local stochastic stability random early marking algorithm
  • 相关文献

参考文献9

  • 1Kelly F P, Maulloo A, Tan D. Rate control in communication networks., shadow prices, proportional fairness and stability[J]. J Oper Res Soe, 1998, 49: 237-252.
  • 2Athuraliya S, Low S H, Li V H, et al. REM: active queue management[J]. IEEE Network, 2001, 15: 48-53.
  • 3Paganini F. A global stability result in network flow control[J]. Systems & Control Letters, 2002, 40: 165-172.
  • 4Yin Q, Low S H. Convergence of REM flow control at a single link[J]. IEEE Communications Letters, 2001, 5: 119-121.
  • 5Long C N, Wu J, Guan X P. Local stability of REM algorithm with time-varying delays [J]. IEEE Communications Letters, 2003, 7: 142-144.
  • 6Gao H J, lam J, Wang C H, et al. Further results on local stability of REM algorithm with time-varying delays[J]. IEEE Communications Letters, 2005, 9: 402-404.
  • 7Zhang L Q, Chen T, Huang B. A new method for stabilization of network control systems with random delays[J]. IEEE Transactions on Automatic Control, 2005, 50(8): 1 177-1 181.
  • 8Feng X B, Loparo K A, Ji Y D, et al. Stochastic stability properties of jump linear systems[J]. IEEE Transaction on Automatic Control, 1992, 37(1): 38- 52.
  • 9俞力.鲁棒控制--线性矩阵不等式方法[M].北京:清华大学出版社,2002.

同被引文献16

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部