期刊文献+

基于粒子群优化的后向非线性独立分量分析算法 被引量:1

Analyzing post-nonlinear independent component by particle swarm optimization algorithms
原文传递
导出
摘要 在分析后向非线性混合独立分量分析算法的基础上,提出了一种基于粒子群优化的独立分量分析算法.该算法以互信息量最小化为目标函数,用高阶奇数多项式拟合非线性分离函数,针对现有粒子群算法的不足,引入带有扰动项改进速度更新公式,通过对粒子群位置矢量和速度矢量的更新,得到全局最优值,从而得到分离矩阵和分离多项式参数.仿真结果表明所提算法是一种非常有效的盲源分离算法. Based on particle swarm optimization, a novel method is proposed to minimize the mutual information. The nonlinear transfer function was simulated by the P-th order polynomial function. After analyzing the shortcoming of the particle swarm optimization algorithm, the velocity updating formula by adding the disturbance term was modified. Through improving position vector and velocity vector, we get the global optimization solution and then separated the mixed signals. The simulation results showed that the independent component analysis based on particle swarm optimization had more remarkable performance.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第6期60-63,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国防预研项目(9140A2202070KG0108)
关键词 独立分量分析 粒子群优化 适应度函数 互信息 互相关函数 扰动项 independent component analysis particle swarm optimization (PSO) fitness function mutual information coherent function disturbance term
  • 相关文献

参考文献11

  • 1Pajunen P, Hyvarinen A, Karhunen J. Nonlinear blind source separation by self-organizing maps[C]// Progress in Neural Information Processing. New York: Springer-Verlag, 1996:1 207-1 210.
  • 2Tan Y, Wang J. Nonlinear blind source separation using a radial basis function network[J]. IEEE Transactions on Neural Networks, 2001, 12(1): 124-134.
  • 3Tan Y, Wang J. Nonlinear blind source separation using higher order statistical and a genetic algorithm [J]. IEEE Transactions on Evolutionary Computation. 2001, 5(6): 600-612.
  • 4Ziehe A, Kawanabe M, Harmeling S. Blind separation of post - nonlinear mixtures using linearizing transformations and temporal decorrelation[J]. Journal of Machine Learning Research, 2003(4) : 1 319- 1 338.
  • 5Kennedy J, Eberhart R. Particle swarm optimization [C]//IEEE International Conference on Neural Networks. Washington: Bur of Labor Star, 1995 (4) : 1 942-1 948.
  • 6尉宇,刘振兴,李宁,孙德宝.改进的粒子群算法及其非线性盲源分离[J].系统工程与电子技术,2006,28(1):138-142. 被引量:6
  • 7Yang H H, Amari S, Cichocki A. Information-theoric approach to blind separation of sources in nonlinear mixture[J]. Signal Processing, 1998, 64 (3): 291-300.
  • 8Oku A S T. Nonlinear blind source separation using coherence function [C] //SICE Annual Coference. Yokohama: Keio University, 2003:2 555-2 560.
  • 9Kennedy J, Eberhart R. Particle swarm optimization [C]//IEEE International Conference on Evolutionary Computation. Washington: Bur of Labor Stat, 1997: 303-308.
  • 10何庆元,韩传久.带有扰动项的改进粒子群算法[J].计算机工程与应用,2007,43(7):84-86. 被引量:22

二级参考文献21

  • 1孙即祥.现代模式识别[M].长沙:国防科技大学出版社,2003..
  • 2YANG H H,AMARI S,CICHOCHI A.Information theoretic approach to blind separation non-linear mixture[J].Signal Processing,1998,64(3):291-300.
  • 3TABLE A,JUTTEN C.Source separation in post nonlinear mixtures:an entropy-based algorithm[C]//Proc.of ICASSP.Seattle,Washington,1998.2089-2092.
  • 4TUGNAIT JITENDRA K.Adaptive blind separation of convolutive mixtures of indendent linear signals[J].Signal Processing,1999,73(7):139-152.
  • 5BUREL G.Blind separation of sources:a nonlinear neural algorithm[J].Neural Network,1992,5(6):937-947.
  • 6PAJUNEN P,HYVARINEN A,KARHUNEN J.Nonlinear blind souce separation by self-organizing maps[M]//In Progress in Neural Information Processing.New York:Springer-Verlag,1996.1207-1210.
  • 7KENNEDY J,EBERHART R C.Particle swarm optimization[C]//Proc.of IEEE International Conference on Neural Networks,IV[C].Piscataway,NJ:IEEE Service Center,1995.1942-1948.
  • 8CLERC M,KENNEDY J.The particle swarm-explosion,stability,and convergence in a multidimensional complex space[J].IEEE Trans.on Evolutionary Computation,2002,6(1):58-73.
  • 9BERGH F V.An analysis of particle swarm optimizers[D].University of Pretoria,South Africa,2002.
  • 10YANG H H,CICHOCKI A A.Information back-propagation for blind separation of sources from non-linear mixture[C]//Proc.ICNN.Houston,1997.2141-2146.

共引文献25

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部